Lösung von Aufgabe 4.3 S (WS 12 13)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Lösung von Caro44

1. Implikation Satz I in "Wenn-Dann"
Es seien A, B und C drei Punkte.
Wenn A, B und C nicht kollinear sind, dann sind sie paarweise verschieden.


2. Widerspruchsbeweis von Satz I
Caro44 Beweis kollineare Punkte.JPG


3. Kontraposition von Satz I
Es seien A, B und C drei Punkte.
Wenn A, B und C nicht paarweise verschieden sind, dann sind sie kollinear.


4. Beweis der Kontraposition von Satz I
Caro44 Kontraposition kollineare Punkte.JPG


5. Umkehrung von Satz I
Es seien A, B und C drei Punkte.
Wenn A, B und C paarweise verschieden sind, dann sind sie nicht kollinear.


6. Gilt auch die Umkehrung als Satz I?
Nein, die Umkehrung gilt nicht.

Bsp.:Caro44 Foto.JPG
--Caro44 16:19, 18. Nov. 2012 (CET)

Lösung von Yellow

1. wenn A,B,C drei nicht kollinare Punkte sind, dann sind sie paarweise verschieden
2.
3. wenn A,B,C nicht paarweise verschieden sind, dann sind sie kollinar
4.
5. wenn A,B,C paarweise verschieden sind, dann sind sie kollinar
Die Umkehrung entspricht dem Axiom I.3 und kann somit nicht bewiesen werden.

--Yellow 16:25, 18. Nov. 2012 (CET)