Lösung von Aufgabe 4
Satz I: Je drei nicht kollineare Punkte sind paarweise verschieden.
- Wir formulieren Satz I neu und beginnen mit „Es seien
,
und
drei Punkte.“ Ergänzen Sie: „Wenn
,
und
… , dann … .“
- Beweisen Sie Satz I indirekt.
- Bilden Sie die Kontraposition von Satz I.
- Beweisen Sie auch die Kontraposition von Satz I.
- Formulieren Sie die Umkehrung von Satz I.
- Gilt auch die Umkehrung von Satz I?
Inhaltsverzeichnis |
Lösung:
Teilaufgabe 1
Es seien ,
und
drei Punkte.
Wenn ,
und
kollinear sind , dann sind je zwei der Punkte
,
und
nicht identisch.
Andere Formulierung:
Teilaufgabe 2: Indirekter Beweis der Implikation
Beweisprinzip
Wir nehmen an, dass bei wahrer Voraussetzung die Behauptung nicht gilt. Anders ausgedrückt: Wir negieren die Behauptung, bleiben aber dabei, dass die Vorsaussetzung wahr ist.
Bemerkung nebenbei: Es wäre sinnvoll, wenn sowas in Ihrem Glossar stehen würde. Dann bräuchte man jweils nur einen Link zu setzen.
Behauptung
Negation der Behauptung
vorangegangene Diskussionen bzw. Lösungsvorschläge
1. Es seien ,
und
drei Punkte. Wenn
,
und
nicht kollinear sind , dann sind sie paarweise verschieden.
2. Voraussetzung: Es seien ,
und
drei Punkte mit nkoll(
,
,
).
Annahme: identisch
o.B.d.A.
Schritt | Begründung |
1) Durch die Punkte ![]() ![]() 2) ![]() ![]() ![]() 3) ![]() ![]() ![]() ![]() 4) Widerspruch zur Voraussetzung |
1) Axiom I/1 2) Identität 3) Definition: (kollinear) |
3. Sind drei Punkte nicht paarweise verschieden, so sind sie kollinear.
5. Sind drei Punkte paarweise verschieden, so sind sie nicht kollinear.
6. Nein.
4. Voraussetzung: ,
und
sind nicht paarweise verschieden.
Annahme: nkoll (,
,
)
I. durch die Punkte und
geht genau eine Gerade g. ->Axiom I/1
II. ist kein Element von g -> Annahme
III. nicht identisch
und
nicht identisch
-> I. und II.
IV. Widerspruch zur Voraussetzung