Winkel, Nebenwinkel, Scheitelwinkel

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Winkel

Begriff des Winkels

Identifizieren von Winkeln

Repräsentanten und Gegenrepräsentanten

In welchen Fällen sind die jeweils blau gefärbten Punktmengen Modelle für Winkel?

Winkel 01.svg Winkel 02.svg Winkel 03.svg Winkel 04.svg
Punktmenge 1 Punktmenge 2 Punktmenge 3 Punktmenge 4
Winkel 05.svg Winkel 06.svg Winkel 07.svg Winkel 08.svg
Punktmenge 5 Punktmenge 6 Punktmenge 7 Punktmenge 8

Tabelle 1

Winkelmodell kein Winkelmodell
3,5,8. Da hier jeweils die Halbgeraden, welche einen Winkel definieren gezeigt werden. Vorr. für 8: es handelt sich um Halbgeraden. 1, da das Innere des WInkels gezeigt wird. 2, siehe 1 , 4 siehe 1, 6, eine Halbgerade fehlt. 7, beide Halbgeraden fehlen.

Prozeß der Begriffserarbeitung als Generierung einer Klasseneinteilung

In der Didaktik bezeichnen wir die Art und Weise der Erarbeitung eines neuen Begriffs entsprechend obiger Tabelle als induktive Begriffserarbeitung: Eine gewisse Menge an Repräsentanten und Gegenrepräsentanten bezüglich des zu erarbeitenden Begriffs wird vorgegeben. Dann teilt man diese Menge in genau zwei Klassen ein. Die eine Klasse bilden alle Begriffsrepräsentanten, die ander Menge der Rest.

Aufgabe: Ergänzen Sie Tabelle 1 durch weitere Repräsentanten bzw. Gegenrepräsentanten zur Erarbeitung des Winkelbegriffs.

Zum besseren Verständnis: Analoge Erarbeitung des Begriffs Trapez:

Realisieren von Winkeln

Die Idee des konstruktiven Begriffserwerbs

Während beim induktiven Begriffserwerb das Ausgangsmaterial für den Schüler bereits vorgefertigt wurde, generiert er es sich beim konstruktiven Begriffserwerb selbst. Der gute Lehrer läßt in der Regel beide Varianten zur Anwendung kommen.

Konstruktion eines Winkels

Aufgabe: Zeichne einen Winkel

Lösung:

Konstruktionsschritt Beschreibung
Winkel konstruktiv 01.svg Zeichne einen ...
Winkel konstruktiv 02.svg Zeichne einen zweiten ..., der

Definition des Winkelbegriffs

Definition V.1: (Winkel)
Ein Winkel ist ein Paar .... .
... heißt der Scheitelpunkt von ...
... sind die Schenkel von ...

Arten, Winkel zu beschreiben

Beispiel Beschreibung in Zeichen Quelltext in Tex
Winkel pq.svg Winkel, der aus den beiden Strahlen \ p und \ q besteht. \angle pq \angle pq
Winkel ASB.svg Winkel, der aus den beiden Strahlen \ SA^+ und \ SB^+ besteht. \angle ASB \angle ASB

Die Idee des gerichteten Winkels

Gerichtete Winkel werden in der Einführung in die Geometrie keine Rolle spielen. Trotzdem dürfen Sie hier ergänzen, was denn ein gerichtetet Winkel wäre.

Das Innere eines Winkels

So ist es zu verstehen

Inneres winkel.png

Flashapplikation

Definition des Inneren eines Winkels

Definition V.2: (Inneres eines Winkels)
Das Innere eines Winkels \angle ASB ist der Schnitt ...der beiden Halbebenen \ SA,B^+ und \ SB,A^+

--Principella 10:47, 12. Jun. 2010 (UTC) korrekt--*m.g.* 03:01, 14. Jun. 2010 (UTC)

Satz V.1
Das Innere eines Winkels ist konvex.
Beweis von Satz V.1
trivial entsprechend Satz IV., Satz IV.3 und der Definition V.2

Überstumpfe Winkel?

Bemerkung: Entsprechend Definition V.2 beinhaltet unsere Geometrie keine überstumpfen Winkel.

Scheitelwinkel und Nebenwinkel

Scheitelwinkel

Beispiele und Gegenbeispiele

Definition

Definition V.3: (Scheitelwinkel)
Die Winkel \angle SA^+,SB^+ und \angle SA^-,SB^- sind Scheitelwinkel.

Nebenwinkel

Beispiele und Gegenbeispiele

Definition

Definition V.4: (Nebenwinkel)
Die Winkel \angle SA^+,SB^+ und \angle SA^-,SB^+ sind Nebenwinkel.