Serie 05 12 13
Aus Geometrie-Wiki
Version vom 6. Januar 2013, 18:04 Uhr von Cplicht (Diskussion | Beiträge)
Aufgabe 5.1
Es sei .
Wir definieren die folgende Abbildung
.
Beweisen Sie: ist eine lineare Abbildung.
Interpretieren Sie geometrisch.
Hilfe:
Aufgabe 5.2
Es sei ,
Es sei die Ebene, die wir wiederum als interpretieren. Wir bilden jedes Element des mittels der Abbildung auf wie folgt ab:
.
Beweisen Sie: ist linear.
Aufgabe 5.3
Geben sei eine Menge, die aus folgenden Vektoren des besteht:
, ,
Beweisen Sie: Jedes aus lässt sich als Linearkombination der Vektoren der Menge darstellen.