13)
Aus Geometrie-Wiki
Version vom 4. Februar 2013, 15:53 Uhr von Würmli (Diskussion | Beiträge)
Beweisen Sie: Der Durchschnitt zweier konvexer Punktmengen ist konvex.
Voraussetzung | M und N sind konvex--Der Bohrer 14:08, 13. Dez. 2012 (CET) |
Behauptung | Schnittmenge ist konvex--Der Bohrer 14:08, 13. Dez. 2012 (CET) |
Beweisschritt | Begründung |
---|---|
1 A M, B M M | Weil M konvex ist |
2 A N, B N N | Weil N konvex ist |
3 | 1), 2) |
4 | 3) |
Weil Element der Schnittmenge ist. Ist die Schnittmenge konvex. Somit ist die Behauptung korrekt.
Geht das mit dem und Zeichen oder muss ich das für jede Menge extra machen? --Würmli 13:09, 4. Feb. 2013 (CET)
Habe mal den Anfang gemacht. Wer macht ein Stück weiter? Nicht (ganz) korrekte Beweise sind übrigens wesentlich lehrricher als richtige Beweise - das ist ja keine neue Weisheit.--Tutorin Anne 12:59, 10. Dez. 2012 (CET)