Lösung von Aufgabe 9.1P (SoSe 13)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Beweisen Sie die Halbgeradentreue der Geradenspiegelung. Nutzen Sie für den Beweis die Streckentreue der Geradenspiegelung und eine geeignete Definition des Begriffs Halbgerade.


Voraussetzung Geradenspiegelung an g Sg mit A'= Sg (A) und B' = Sg (B) und P \in AB^{+}
Behauptung Sg (AB+) = A'B'^{+} d.h. P' \in A'B'^{+}


Es musshttp://upload.wikimedia.org/wikipedia/commons/f/fd/Button_underline.png also gezeigt werden, dass das Bild P' eines beliebigen Punkts P der Halbgerade auch auf dem Bilder der Halbgeraden liegt.

Beweisschritt Begründung
1 P \in AB^{+} Voraussetzung
2 P \in \  \  \overline{AB}   \cup  \{P|ZW (A,B,P)\} 1), Def Halbgerade
3 P \in \overline{A'B'} Streckentreue
4 P \in \overline{AB}  + \overline{BP} = \overline{AP} Def Zwischen
5 P \in \overline{A'B'}  + \overline{B'P'} = \overline{A'P'} Abstandserhaltung der Geradenspiegelung
6 P' \in \  \  \overline{A'B'}   \cup  \{P'|ZW (A',B',P')\} Def Zwischen 3), 5)
7 P' \in A'B'^{+} Def Halbgerade 6)

--Regenschirm 17:50, 25. Jun. 2013 (CEST)