14)

Aus Geometrie-Wiki
Version vom 7. Januar 2014, 18:38 Uhr von Tutorin Anne (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

a) Geben Sie die Menge M aller konvexer Drachenvierecke an.
b) Bilden Sie das kartesische Produkt der Menge M \times M.
c) Wir definineren eine Relation R mit R:=A\subseteq B. Bestimmen Sie die Relation R auf M \times M.
d) Untersuchen Sie die Relation R auf ihre Eigenschaften (reflexiv, symmetrisch, transitiv).


  • Sollen wir hier in dem Fall den schiefen Drachen auch nehmen? Ich würde sagen JA, bin mir allerdings nicht sicher. --Der Kuckuck 19:57, 24. Nov. 2013 (CET)
  • Es ist nur die Menge der symmetrischen Drachen gemeint. Die Aufgabe ist aber nicht falsch, wenn du von der Menge der schiefen Drachen ausgehst.--Tutorin Anne 10:11, 25. Nov. 2013 (CET)

zu a) M={Drache schief, Drache, Raute, Quadrat}
zu b) M x M={(Ds, Ds), (Ds,D),(Ds,RA), (Ds,Q), (D,Ds),(D,D), (D,RA), (D,Q), (RA, Ds), (RA,D), (RA,RA), (RA,Q), (Q,Ds), (Q,D), (Q, RA), (Q,Q)}

  • Richtig, 16 Paare! Es war ein kleiner Tippfehler drin, so dass (Q,Q) zwei Mal vorkam - den habe ich korrigiert.--Tutorin Anne 10:55, 28. Nov. 2013 (CET)

zu c) R={(D,Ds), (RA,Ds), (RA,D), (Q,RA), (Q,D), (Q,Ds)}

  • Das sind noch nicht alle Paare, die zu dieser Relation gehören. Es sind aber keine Falschen drin.--Tutorin Anne 10:55, 28. Nov. 2013 (CET)

zu d) R ist nicht reflexiv und nicht symmetrisch--Smartie 15:39, 26. Nov. 2013 (CET)

  • Du schreibst reflexiv. Auf deine in c) beschrieben Relation trifft das allerdings nicht zu. Was ist mit transitiv?--Tutorin Anne 10:55, 28. Nov. 2013 (CET)