Lösung von Aufgabe 5.1 P (SoSe 14)
a) Geben Sie die Menge aller konvexer Drachenvierecke an.
b) Bilden Sie das kartesische Produkt der Menge .
c) Wir definineren eine Relation mit . Bestimmen Sie die Relation auf .
d) Untersuchen Sie die Relation auf ihre Eigenschaften (reflexiv, symmetrisch, transitiv).
a) Raute (R), Quadrat (Q), Drachen (D) b) M x M : ((R,R);(R,Q);(R,D);(Q,Q);(Q,R);(Q,D);(D,D);(D,R);(D,Q)) c) R auf M x M : ((R,R);(R,D);(Q,Q);(Q,R);(Q,D);(D,D)) d) Die Relation ist reflexiv, sie ist nicht symmetrisch und nicht transitiv --MarieSo (Diskussion) 19:18, 26. Mai 2014 (CEST)
Eine Frage, was für ein Drachen ist dabei gemeint? Der schiefe Drachen ist auch ein konvexer Viereck. Wenn wir uns dann die Menge anschauen, wären noch der Parallelogramm und der Rechteck dabei. --Picksel (Diskussion) 21:16, 26. Mai 2014 (CEST)
Das stimmt Picksel, aber es genügt mit dem symmetrischen Drachen. Zur Übung lässt sich das aber auch mit dem allgemeinen Drachen durchführen. Bis auf Antwort d) sind alle Antworten von MarieSo richtig.--Tutorin Anne (Diskussion) 14:30, 31. Mai 2014 (CEST)
Zu d): Sie ist auch nicht reflexiv --MarieSo (Diskussion) 13:12, 1. Jun. 2014 (CEST)