Übung 08.12.14
Aus Geometrie-Wiki
Version vom 4. Dezember 2014, 17:14 Uhr von *m.g.* (Diskussion | Beiträge)
Aufgabe III.01
Gegeben seien die Gerade durch die Geradengleichung und der Punkt . Beweisen Sie: Für jeden beliebigen Punkt auf gilt: Der Schnittpunkt der Senkrechten auf in mit der Mittelsenkrechten von ist ein Punkt der Normalparabel.
Aufgabe III.02
In der Mathematikdidaktik spricht man gern vom Spiralprinzip der Vermittlung mathematischen Lehrstoffs. Warum wäre der Begriff Schraubenlinienprinzip angebrachter?