Sätze
Aus Geometrie-Wiki
Version vom 8. Juli 2010, 08:36 Uhr von Rakorium (Diskussion | Beiträge)
Sätze
Satz I.1:
- Es seien g und h zwei Geraden. Wenn g und h nicht identisch sind, haben sie höchstens einen Punkt gemeinsam.
Satz I.2: (Kontraposition von Satz I.1)
- Es seien g und h zwei Geraden.
- Wenn g und h mehr als einen Punkt gemeinsam haben, so sind g und h identisch.
Satz I.3: (Existenz von drei Geraden)
- Es existieren mindestens drei paarweise verschiedene Geraden.
Satz I.5:
- Zwei voneinander verschiedene Ebenen haben entweder keinen Punkt oder eine Gerade gemeinsam, auf der alle gemeinsamen Punkte beider Ebenen liegen.
Satz I.6:
- Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam.
Satz I.7:
- Jede Ebene enthält (wenigstens) drei Punkte.
Satz II.1:
- Aus folgt .
Satz II.2:
- Aus folgt .
Satz II.3:
- Es sei mit sind paarweise verschieden.
Dann gilt oder oder .
Satz II.4:
- Es sei ein Punkt einer Geraden .
Die Teilmengen , und bilden eine Klasseneinteilung der Geraden .
Satz III.1: (Existenz und Eindeutigkeit des Mittelpunkte einer Strecke)
- Jede Strecke hat genau einen Mittelpunkt.
Satz IV.1: (Repräsentantenunabhängigkeit)
- Wenn ein Punkt der Halbebene ist, dann gilt und .
Satz IV.2:
- Halbebenen sind konvexe Punktmengen
Satz IV.3:
- Der Durchschnitt zweier konvexer Punktmengen ist konvex.
Satz V.1:
- Das Innere eines Winkels ist konvex.
Satz V.2:
- Wenn der Punkt im Inneren des Winkels und nicht auf einem der Schenkel des Winkels liegt, dann ist die Größe der beiden Teilwinkel und jeweils kleiner als die Größe des Winkels .
Satz V.3: (Existenz von rechten Winkeln)
- Es gibt rechte Winkel.
Satz V.4:
- Jeder rechte Winkel hat das Maß 90.
Satz V.5: ( Existenz und Eindeutigkeit der Senkrechten in einem Punkt)
- Gegeben seien ein Punkt P auf einer Geraden g in einer Ebene E. Es gibt in E genau eine Gerade, die durch P geht und senkrecht auf g steht.
oder
- Es sei eine Gerade der Ebene . Ferner sei ein Punkt auf . In der Ebene gibt es genau eine Gerade , die durch geht und senkrecht auf steht.
Satz VI.1: (Existenz und Eindeutigkeit der Mittelsenkrechten)
- Jede Strecke hat in jeder Ebene, zu der die Strecke vollständig gehört, genau eine Mittelsenkrechte.
Satz VI.:
- Es sei die Winkelhalbierende des Winkels . Dann gilt .
Satz VI.2: (Existenz und Eindeutigkeit der Winkelhalbierenden)
- Zu jedem Winkel gibt es genau eine Winkelhalbierende.
Satz VII.1:
- Die Relation kongruent ist auf der Menge aller Strecken eine Äquivalenzrelation.
Satz VII.2:
- Die Relation kongruent ist auf der Menge aller Winkel eine Äquivalenzrelation.
Satz VII.3:
- Die Relation kongruent ist auf der Menge aller Dreiecke eine Äquivalenzrelation.
Satz VII.4: (Kongruenzsatz WSW)
- Wenn für zwei Dreiecke und die folgenden 3 Kongruenzen
- gelten,
- dann sind die beiden Dreiecke und kongruent zueinander.
Satz VII.5: (Basiswinkelsatz)
- In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
Lemma 1:
- Die Winkelhalbierende eines Winkels schneidet die Strecke in genau einem Punkt .
Satz VII.6: (Mittelsenkrechtenkriterium)
- Eine Menge von Punkten ist genau dann die Mittelsenkrechte einer Strecke , wenn für jeden Punkt gilt: .
Satz VII.6 a: (hinreichende Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von gehört.)
- Wenn ein Punkt zu den Endpunkten der Strecke jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von .
Satz VII.6 b: (notwendige Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von gehört)
- Wenn ein Punkt zur Mittelsenkrechten der Strecke gehört, dann hat er zu den Punkten und ein und denselben Abstand.
Satz VIII.1: (schwacher Außenwinkelsatz)
- Die Größe eines jeden Außenwinkels eines Dreiecks ist jeweils größer als die Größe eines jeden Innenwinkels dieses Dreiecks, der kein Nebenwinkel zu dem gewählten Außenwinkel des Dreiecks ist.
Lemma 2:
- Wenn ein Punkt im Inneren des Winkels liegt, dann liegt der gesamte Strahl im Inneren des Winkels .