17)
Aus Geometrie-Wiki
Version vom 3. November 2016, 13:05 Uhr von Schnirch (Diskussion | Beiträge)
Welche Definition für Kreis ist richtig? Warum (nicht)?
- Sei ein Punkt und eine Menge, deren Elemente Punkte sind. Wenn gilt: ist konstant, so ist ein Kreis mit Mittelpunkt .
- Sei ein Punkt und eine Punktmenge. Wenn gilt: , dann ist ein Kreis.
- Sei ein Punkt in der Ebene und eine Punktmenge. Wenn alle Punkte enthält für die gilt∶ und , dann ist ein Kreis mit dem Mittelpunkt .
- Sei ein Punkt in der Ebene und eine Punktmenge. Wenn genau alle Punkte enthält für die gilt∶ und , dann ist ein Kreis mit dem Mittelpunkt .
- Sei ein Punkt in der Ebene und eine Menge, deren Elemente Punkte sind. Wenn für alle gilt∶ , dann ist ein Kreis.
- Sei ein Punkt und eine Menge, deren Elemente Punkte sind. Alle Elemente von liegen in ein und derselben Ebene wie . Wenn gilt: ist konstant, so ist ein Kreis mit Mittelpunkt .