Pfeilklassen SoSe 2017

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabe 1 (Pfeilklassen SoSe 2017)

In einem kartesischen Koordinatensystem mit dem Ursprung O seien die Punkte P\left(\frac{1}{2}\sqrt{2},\frac{1}{2}\sqrt{2}\right) und Q \left(\frac{1}{2}\sqrt{3}, \frac{1}{2} \right) gegeben.
Bestimmen Sie \overrightarrow{OP} \oplus \overrightarrow{OQ} Berechnen Sie die Länge die jeder Pfeil aus \overrightarrow{OP} \oplus \overrightarrow{OQ} hat.

Aufgabe 2 (Pfeilklassen SoSe 2017)

Es sei \overline{ABC} ein rechtwinkliges Dreieck mit dem rechten Winkel bei C.qseien wie üblich die Längen der Hypotenusenabschnitte von \overline{ABC}. Bestimmen Sie die Koordinaten der Pfeilklassen \overrightarrow{AC}, \overrightarrow{AB} und \overrightarrow{BC} bezüglich eines Koordinatensystems, dessen Ursprung der Fußpunkt der Höhe h_c ist. Ferner gelte, dass B auf der positiven x-Achse und C auf der positiven y-Achse liegt.

Aufgabe 3 (Pfeilklassen SoSe 2017)

Es sei \overline{ABCD} ein Parallelogramm. Beweisen Sie: \frac{1}{2} \overrightarrow{AB} \oplus \frac{1}{2} \overrightarrow{BC} = \frac{1}{2} \overrightarrow{AD} \oplus \frac{1}{2} \overrightarrow{DC}.

Aufgabe 4 (Pfeilklassen SoSe 2017)

Beweisen Sie: \oplus ist auf der Menge der Pfeilklassen der Ebene repräsentantenunabhängig.

Aufgabe 5 (Pfeilklassen SoSe 2017)

Beweisen Sie: Die Pfeilklassen der Ebene bilden mit der Pfeilklassenaddition eine abelsche Gruppe.