analytische Geometrie SoSe 2018

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Das Wiki für die Lehrveranstaltung "Lineare Algebra/analytische Geometrie", Sommersemester 2017


Inhaltsverzeichnis

Literatur

Literatur

Aus früheren Semestern

Kapitel 1: Lineare Gleichungssysteme

Lineare Gleichungssysteme mit zwei Variablen und zwei Gleichungen

Lösungsmenge einer Gleichung mit zwei Variablen

Allgemeine lineare Gleichung mit zwei Variablen

ax + by + c = 0


\begin{align}
ax+by=c \\
a, b, c \in \mathbb{R} \\
x, y \in \mathbb{R},
\end{align}
[ www.geogebra.org is not an authorized iframe site ]

Grafische Veranschaulichung der Lösungsmenge einer Gleichung vom Typ ax+by=c

Es seien a, b, c \in \mathbb{R} , beliebig aber fest, a, b nicht gleichzeitig 0,
x,y \in \mathbb{R}, variabel.
Aus der Schule ist die folgende Gleichung für Geraden bekannt: y=mx+b, m,b \in \mathbb{R}, beliebig aber fest, x,y \in \mathbb{R} variabel.


Das Gleichsetzungsverfahren


\begin{align}
4x  - 5y &=13 \\
3x +4y &=3
\end{align}


Wir stellen beide Gleichungen nach y um:

\begin{align}
y &=& \frac{4}{5}x &- &\frac{13}{5} \\
y &=& -\frac{3}{4}x &+ &\frac{3}{4}
\end{align}
Gleichsetzen der rechten Seiten:


\frac{4}{5}x - \frac{13}{5} = \frac{3}{4}x + \frac{3}{4}
Vereinfachen:
x=\frac{67}{31}