Serie 2 SoSe 2018
Übungsaufgaben zum 04.05.2018
Implikation, Voraussetzung, Behauptung, Umkehrung, Kontraposition, Widerspruchsbeweis, hinreichend, notwendig, hinreichend und notwendig
Hinweis: Für die geometrischen Beweise sind die Dreieckskongruenzsätze mitunter hilfreich. Sie finden sie hier: https://de.wikipedia.org/wiki/Kongruenzsatz
Inhaltsverzeichnis |
Aufgabe 2.1 SoSe 2018
Ein Blick über den Tellerrand der Geometrie:
Satz S:
a) Formulieren Sie Satz S schultauglich, d.h. weniger formal in einem normalen deutschen Satz.
b) Wie lautet die Voraussetzung in Satz S?
c) Wie lautet die Behauptung von Satz S.
d) Beweisen Sie Satz S.
Aufgabe 2.2 SoSe 2018
a) Bilden Sie sie Umkehrung von Satz S aus Aufgabe 2.1.
b) Begründen Sie: Die Umkehrung von Satz S ist keine wahre Aussage.
c) Formulieren Sie die Kontraposition von Satz S.
Aufgabe 2.3 SoSe 2018
Formulieren Sie den Basiswinkelsatz für Dreiecke in Wenn-Dann-Form und beweisen Sie ihn. Verwenden Sie für den Beweis die Existenz der Winkelhalbierenden eines Winkels und den Kongruenzsatz SWS. Beziehen Sie sich in Ihrem Beweis sinnvollerweise auf eine Skizze.
Aufgabe 2.3 SoSe 2018
Eva formuliert die Umkehrung des Basiswinkelsatzes für Dreiecke wie folgt:
- Wenn in einem Dreieck die Basiswinkel kongruent zueinander sind, dann ist das Dreieck gleichschenklig.
Warum ist Evas Formulierung nicht ganz korrekt?