Lösung Aufgabe 5.01 SoSe 2018

Aus Geometrie-Wiki
Version vom 12. Mai 2018, 10:27 Uhr von *m.g.* (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabe 5.01 SoSe 2018

Wir betrachten das folgende Modell \mathbb{M}:=(\mathbb{P}, \mathbb{G}, \operatorname{inz}) für die Inzidenzgeometrie:
Modellpunkte \mathbb{P}:
\mathbb{P} := \{A,B,C,D\}
Modellgeraden \mathbb{G}:
\mathbb{G} = \{\{A,B\}, \{A,C\}, \{A,D\}, \{B,C\}, \{B,D\}\}
Inzidenz \operatorname{inz}:
Elementbeziehung: Ein Punkt P inzidiert mit einer Geraden g , wenn er zu g gehört: P \operatorname{inz} g :\Leftrightarrow P \in g

  1. Warum ist \mathbb{M} kein Modell für die ebene Inzidenzgeometrie?
  2. Ergänzen Sie \mathbb{M} derart, dass alle Axiome der ebenen Inzidenz erfüllt sind.

Lösung 1

Lösung 2

Lösung 3