Lösung von Aufgabe 2.7 SoSe 2018

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabe 2.6 SoSe 2018

Wir setzen den Innenwinkelsatz für Dreiecke und den Nebenwinkelsatz als bewiesen voraus.
Satz: (starker Außenwinkelsatz)

Jeder Außenwinkel eines Dreiecks ist so groß wie die Summe der Größen der beiden nicht anliegenden Innenwinkel.

a) Formulieren Sie den starken Außenwinkelatz in Wenn-Dann-Form.
b) Formulieren Sie die Voraussetzung und die Behauptung des starken Außenwinkelsatzes unter Verwendung der Bezeichnungen in der folgenden Skizze:

Skizze für den Beweis des starken Außenwinkelsatzes
c) Beweisen Sie den starken Außenwinkelsatz.

Lösung

Teilaufgabe a)

Wenn ein Winkel  \beta ' ein Außenwinkel eines Dreiecks  \overline{ABC} ist, dann ist seine Größe gleich der Summe der Größen der beiden Innenwinkel von  \overline{ABC}, die keine Nebenwinkel zu  \beta ' sind.

Teilaufgabe b)

Voraussetzung

 \beta' ist Außenwinkel von  \overline{ABC} .

Behauptung

\vert \beta' \vert = \vert \alpha \vert + \vert \gamma \vert