SoSe 2018 Lösung von Aufgabe 6.01
Aufgabe 6.01In einer Übung definierte eine Kommilitonin den Begriff Halbgerade wie folgt:
Lösung 1Behauptung: Def V <=> Def Ü zz. P Element von AB, d.h. P muss zwischen den Punkten A und B liegen Strecke AB ist größer als Strecke AP Kommentar --*m.g.* (Diskussion) 16:32, 10. Jun. 2018 (CEST)Hier ist Luft nach oben (freundlich ausgedrückt). Natürlich können wir beide Implikationen zusammenfassen zu einer Äquivalenz. Def Ü genau dann, wenn Def V. Dazu sind zwei Beweise zu führen. Beweis 1Wenn ein Punkt des Strahls nach Def Ü ist dann ist er auch ein Punkt des Strahls nach Def V.
Sei ein Punkt von nach Def Ü. VoraussetzungIn diesem Fall gilt: Anders ausgedrückt: Fall 1
Fall 2
Behauptung ist auch ein Punkt von nach Definition V, d.h. Fall agehört zur Strecke Fall b
Der BeweisWenn Fall 1 eintritt folgt Fall a. kann nicht eintreten, denn das wäre Fall 1 und der ist schon abgearbeitet. ... den Rest können Sie alleine. Beweis 2Wenn anch Def V zu gehört, dann gehört auch nach Def Ü zu . ... Lösung 2Probieren Sie beide Beweise korrekt zu führen. |