Lösung von Aufgabe 8.7

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Mal wieder formlos:

1) Das Innere eines Dreiecks ist der Durchschnitt dreier Halbebenen aA+, bB+ und cC+ nach Principella 2) nach Satz IV.2: Halbebenen sind konvexe Punktmengen und 3) nach Satz IV.3: Der Durchschnitt zweier konvexer Punktmengen ist konvex also ist das Innere eines Dreiecks konvex.

Falls das ausreicht, wie muss ich das jetzt schreiben? --Nicola 17:32, 24. Jun. 2010 (UTC)


- Vor.: Dreieck ABC - Beh:: Das Innere eines Dreiecks ist konvex

- 1. AB,C+ ist konvex (Satz: Halbebene sind konvexe Punktmengen) - 2. BC,A+ ist konvex (Satz: Halbebene sind konvexe Punktmengen) - 3. AC,B+ ist konvex (Satz: Halbebene sind konvexe Punktmengen) - 4. AB,C+ geschnitten mit BC,A+ geschnitten mit AC,B+ ist konvex (Satz: Schnittmenge zweier konvexer Punktmengen ist konvex) - daraus folgt das Innere eines Dreiecks (AB,C+ geschnitten mit BC,A+ geschitten mit AC,B+) ist konvex.--Frühling 08:34, 15. Jul. 2010 (UTC)