Lösung von Aufgabe 8.6

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Definieren Sie die Begriffe Stufenwinkel und Wechselwinkel (an geschnittenen Geraden).

Lösung--Schnirch 11:31, 15. Jul. 2010 (UTC)

Definition (Stufenwinkel): Zwei Winkel \angle{(p,q)} und \angle {(r,s)} heißen Stufenwinkel, falls ein Schenkel \ r des einen Winkels Teilmenge eines Schenkels \ p des anderen Winkels ist und die anderen beiden Schenkel \ q und \ s in einer Halbebene bezüglich der Geraden \ g liegen, die durch die beiden Schenkel \ p und \ r gegeben ist.

Definition (Wechselwinkel): Zwei Winkel \angle {(p,q)} und \angle {(r,s)} heißen Wechselwinkel, falls der Scheitelwinkel des Winkels \angle {(p,q)} und der Winkel \angle {(r,s)} Stufenwinkel sind.

vorangegangene Diskussion

Es seien g und h zwei verschiedene Geraden.
Werden g und h von einer weiteren Geraden i geschnitten, so heißen zwei innere oder zwei äußere Winkel auf verschiedenen Seiten der schneidenden Gerade i, die nicht Nebenwinkel sind, Wechselwinkel.
Stufenwinkel heißen ein innerer und ein äußerer Winkel auf der selben Seite der schneidenden Gerade i, die nicht Nebenwinkel sind.
--Maude001 17:36, 19. Jun. 2010 (UTC)


Noch ein Vorschlag für Stufenwinkel: Würde man g auf h abbilden, so sind die Winkel Stufenwinkel, die auf diese Weise aufeinander liegen würden.--Nicola 17:19, 24. Jun. 2010 (UTC)