Lösung von Aufgabe 5.1 P (WS 20 21)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

a) Definieren Sie die Begriffe: "gleichseitiges Dreieck" und "gleichschenkliges Dreieck". Die Begriffe "Dreieck" und "Seite eines Dreiecks" seien bereits definiert.
b) Beweisen Sie durch Kontraposition: Jedes gleichseitige Dreieck ist auch ein gleichschenkliges Dreieck.

a) Definition ("gleichseitiges Dreieck"): Ein gleichseitiges Dreieck ist ein Dreieck bei dem alle Seiten gleich lang sind.--Werzdavid (Diskussion) 13:30, 2. Dez. 2020 (CET)

Füge am besten noch "drei" ein, d.h. Ein gleichseitiges Dreieck ist ein Dreieck bei dem dreiSeiten gleich lang sind --Tutorin Laura (Diskussion) 14:17, 3. Dez. 2020 (CET)
Definition ("gleichschenkliges Dreieck"): Ein gleichschenkliges Dreieck ist ein Dreieck bei dem mindestens zwei Seiten gleich lang sind.--Werzdavid (Diskussion) 13:30, 2. Dez. 2020 (CET)
Du hast jetzt definiert, dass auch 3, 4, 5, ... Seiten gleich lang sind bei einem gleichschenkligen Dreieck. 
Streiche das mindestens und deine Definition ist korrekt. --Tutorin Laura (Diskussion) 14:17, 3. Dez. 2020 (CET)



b) Kontraposition: Ist ein Dreieck nicht gleichschenklig, dann ist es auch kein gleichseitiges Dreieck.
Beweis:

Nr. Beweisschritt Begründung
1) Dreieck ist nicht gleichschenklig
2) Das Dreieck hat keine gleichlangen Seiten 1) + Def. gleichschenkliges Dreieck
3) Das Dreieck ist nicht gleichseitig 2) + Def. gleichseitiges Dreieck

--Werzdavid (Diskussion) 13:30, 2. Dez. 2020 (CET)