Die Axiome der Anordnung

Aus Geometrie-Wiki
Version vom 13. Dezember 2020, 15:15 Uhr von *m.g.* (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Streckenantragen und das Axiom vom Lineal

Der Mittelpunkt einer Strecke

Wir wissen nun, dass eine offene Strecke \overline{AB} die Menge aller Punkte ist, die zwischen \ A und \ B liegen. Vereinigt man diese Menge mit der Menge der beiden Endpunkte \ A und \ B, so hat man die gesamte Strecke \overline{AB}. Zu unseren grundlegenden Vorstellungen von Strecken gehört, dass jede Strecke \overline{AB} einen Mittelpunkt \ M hat. \ M wäre der Punkt auf \overline{AB}, der sowohl zu \ A als auch zu \ B denselben Abstand \frac{| \overline{AB} |}{2} hat.

Definition III.1: (Mittelpunkt einer Strecke)
Wenn ein Punkt \ M der Strecke \overline{AB} den gleichen Abstand zu Punkt A wie zu Punkt B hat, dann heißt dieser Punkt M Mittelpunkt der Strecke \overline {AB} (\left| AM \right| = \left| MB \right|)
Satz III.1: (Existenz und Eindeutigkeit des Mittelpunkte einer Strecke)
Jede Strecke hat genau einen Mittelpunkt.
Beweis der Existenz und Eindeutigkeit des Mittelpunktes einer Strecke
Die Materie erscheint einsichtig und einfach. Übungsaufgabe?? Nichts ist einfach. Mit den bisher bereitgestellten axiomatischen Grundlagen unserer Geometrie wird es Ihnen nicht gelingen, etwa zu zeigen, dass jede Strecke einen Mittelpunkt besitzt.


Der Knackpunkt bezüglich des Nachweises der Existenz und Eindeutigkeit des Streckenmittelpunktes besteht darin, dass unsere derzeitige Theorie noch nicht genügend Punkte zu Verfügung stellt. Momentan muss unser Raum nicht mehr als 4 Punkte enthalten. Nach Axiom I.7 sind diese vier Punkte nicht komplanar, woraus folgt, dass je drei von ihnen nicht auf ein und derselben Geraden liegen. Damit könnte eine durch zwei verschiedene dieser vier Punkte eindeutig bestimmte Strecke gar keinen Mittelpunkt haben, denn dieser müsste entsprechend Definition III.1 bezüglich unserer zwei Endpunkte auf derselben Geraden liegen.

Es wird Zeit, die Anzahl Punkte unserer Theorie radikal zu erhöhen. Konzentrieren wir uns diesbezüglich zunächst auf einen Strahl \ AB^{+}. Nach unserer Vorstellung von Halbgeraden können wir je zwei Punkten von \ AB^{+} genau eine nichtnegative reelle Zahl (den Abstand der beiden Punkte) zuordnen. Nach unseren Vorstellungen etwa von Zahlenstrahl gibt es auch zu jeder nicht negativen reellen Zahl d genau einen Punkt \ D auf \ AB^{+}, der zu \ A gerade den Abstand \ d hat. Bei Konstruktionsaufgaben finden wir diese Idee im Zusammenhang mit dem Streckenantragen wieder.

Streckenantragen

S 01.jpg S 02.jpg
S 03.jpg S 04.jpg

Das Axiom vom Lineal

Wir sind überzeugt davon, dass unsere Konstruktion entsprechend des vorangegangenen Abschnitts immer funktioniert und der so gewonnene zweite Endpunkt unserer konstruierten Strecke eindeutig bestimmt ist. Die Idee des Streckenantragens müssen wir jetzt jedoch axiomatisch fordern bzw. begründen.

Axiom III.1: (Axiom vom Lineal)
Zu jeder nicht negativen reellen Zahl \ d gibt es auf jedem Strahl \ p genau einen Punkt, der zum Anfangspunkt von \ p den Abstand \ d hat.

Zum Sprachgebrauch. Wir werden in kommenden Beweisen einzelne Beweisschritte häufig mit dem Axiom vom Lineal begründen müssen. Wir werden in einem solchen Fall ggf. auch mit der Existenz und Eindeutigkeit des Streckenantragens begründen. Letzteres ist schließlich nichts anderes als der Inhalt des Axioms vom Lineal.

Existenz und Eindeutigkeit des Mittelpunktes einer Strecke

Nachdem das Axiom vom Lineal formuliert wurde, wird es uns gelingen Satz III.1 zu beweisen.

Jetzt wirklich: Beweis von Satz III.1

noch einmal der Satz:

Jede Strecke hat einen und nur einen Mittelpunkt.

Es sind also zwei Beweise zu führen:

  1. Existenzbeweis: Jede Strecke hat einen Mittelpunkt.
  2. Eindeutigkeitsbeweis: Jede Strecke hat nicht mehr als einen Mittelpunkt.
    (Highlanderbeweis: Es kann nur einen geben.)
Der Existenzbeweis
Es sei \overline{AB} eine Strecke
Behauptung:
Es gibt einen Punkt auf der Strecke \overline{AB} der zu den Endpunkten \ A und \ B jeweils ein und denselben Abstand hat.
Die Behauptung noch mal: \exists M   \in  \overline{AB} : \ \left| AM \right| = \left| MB \right| .

Der Beweis:


Jede Strecke \overline{AB} hat einen Mittelpunkt.
Beweisschritt Begründung
(I) \exists d \in \mathbb{R}^{+} \ : \ d = \left| AB \right| Axiom II.1 (Abstandsaxiom)
(II) \exists d^{*} \in \mathbb{R}^{+} \ : \ d^{*} = \frac{d}{2} Tragen Sie hier die Begründung ein.
(III) \exists M \in AB^{+} \ : \ \left| AM \right| = d^{*} Axiom III.1 (Axiom vom Lineal)
(IV) \operatorname{Zw} \left( A, M, B \right) und damit M \in \overline{AB} Wegen III, Hilfssatz A und der Definition der Zwischenrelation
(V) \ \left| AM \right| + \left| MB \right| = \frac{\left| AB \right|}{2} + \left| MB \right| = \left| AB \right| Definition der Zwischenrelation \ \left| AM \right| + \left| MB \right| = \left| AB \right|
Wegen II und III (\ \left| AM \right|=d^{*}=\frac{d}{2}=\frac{\left| AB \right|}{2})
(VI) \left| MB \right| = \frac{\left| AB \right|}{2} Wegen V
(VII) \left| AM \right| = \left| MB \right| Tragen Sie hier die Begründung ein.
(VIII) \ M ist der Mittelpunkt von \overline{AB} Wegen VII und der Definition III.1 (Mittelpunkt einer Strecke)

Hilfssatz A:

Voraussetzung:
Es seien \ A und \ B zwei verschieden Punkte. Für den Punkt \ M mit \ M \in AB^{+} möge gelten: | AM | = \frac{|AB|}{2}
Behauptung:
\operatorname{Zw}(A, M, B).

Beweis von Hilfssatz A:

Weil \ M \in AB^{+} gilt entweder
  1. \operatorname{Zw} (A, M, B) oder
  2. \operatorname{Zw} (A, B, M)
(s. Definition Strahl AB^{+})
Falls 1. gilt, gilt unsere Behauptung.
Falls unsere Behauptung nicht gelten sollte, müsste 2. also \operatorname{Zw} (A, B, M) gelten.
Nehmen wir also an, dass \ B zwischen A\ und \ M liegt: \operatorname{Zw} (A, B, M)
Wäre unsere Annahme wahr, müsste die folgende Gleichung gelten: |AB|+|BM|=|AM|
Die Gültigkeit dieser Gleichung wäre jedoch ein Widerspruch zu unserer Voraussetzung, da |BM|
dann negativ sein müsste und dies wegen Axiom II.1 (Abstandsaxiom) nicht möglich ist.
Also ist unsere Annahme \operatorname{Zw} (A, B, M) zu verwerfen und es gilt \operatorname{Zw} (A, M, B)
Der Eindeutigkeitsbeweis

Übungsaufgabe

Hinweis: Nehmen Sie an, eine Strecke \overline{AB} hätte zwei Mittelpunkte \ M_1 und \ M_2.


Halbebenen und das Axiom von Pasch

Halbebenen

Analogiebetrachtungen

Die folgenden Lückentexte können Sie auch als Übungsblatt im pdf-Format herunterladen: Übungsblatt Halbgeraden/-ebenen‎

Wir konstatieren:

Eine Gerade wird durch einen ......Punkt ...... in zwei .....Halbgeraden....... eingeteilt.
Eine Ebene wird durch eine ....Gerade ........ in zwei ...Halbebenen......... eingeteilt..
Eine Gerade ist ein .ein....dimensionales Objekt.
Eine Ebene ist ein .zwei....dimensionales Objekt
Im Fall dieser Geradenteilung ist der Trenner ein ..null...dimensionales geometrisches Objekt
Im Fall dieser Ebenenteilung ist der Trenner ein .ein....dimensionales geometrisches Objekt.
Wenn also n die Dimension des geometrischen Objekts ist, das geteilt wird, dann hat der Trenner die Dimension ..n-1... .


Geradenteilung:

Es seien \ g eine Gerade und \ T ein Punkt auf ihr. Ferner sei \ Q ein von \ T verschiedener Punkt der Geraden \ g. Die Menge \ g \setminus T wird durch durch den Trenner \ T in genau zwei Klassen eingeteilt:
  1. Die Menge aller Punkte von \ g \setminus T, die mit \ Q auf derselben .Halbgeraden.. .
  2. Die Menge aller Punkte von \ g \setminus T, die mit \ Q nicht auf derselben ..Halbgeraden. .

Ebenenteilung:

Es seien \ \varepsilon eine Ebene und \ t eine Gerade, die vollständig in \ \varepsilon liegt. Ferner sei \ Q ein nicht zu \ t gehörender Punkt der Ebene \ \varepsilon. Die Menge \ \varepsilon \setminus t wird durch durch den Trenner \ t in genau zwei Klassen eingeteilt:
  1. Die Menge aller Punkte von \ \varepsilon \setminus t, die mit \ Q auf derselben ..Halbebene. .
  2. Die Menge aller Punkte von \ \varepsilon \setminus t, die mit \ Q nicht auf derselben .Halbebene.. .

Definition des Begriffs der Halbebene

Alles hat zwei Seiten oder grundlegende Ideen der Beschaffenheit von Ebenen

Zu unsere Vorstellung von der Eigenschaften einer beliebigen Ebene \varepsilon gehört u.a., dass jede Gerade \ g, die zu unserer jeweiligen Ebene \varepsilon gehört, diese in zwei Hälften bzw. zwei Seiten einteilt. Zur Kennzeichnung der beiden Seiten von \varepsilon bezüglich der Geraden \ g verwenden wir einen Punkt \ Q \in \varepsilon, welcher nicht zu \ g gehören sollte. Halbebene 00.png
Zu der einen Hälfte von \ \varepsilon bezüglich \ g gehören alle die Punkte aus \varepsilon \setminus g, die mit \ Q auf derselben Seite von \ g liegen. Alle anderen Punkte aus \varepsilon \setminus g gehören zur anderen Seite von \ \varepsilon bezüglich \ g. Halbebene 01.png

Offene Halbebenen

Die beiden Seiten, in die die Menge der Punkte einer Ebene \ \varepsilon, die nicht auf einer Geraden \ g dieser Ebene liegen, durch diese Gerade \ g eingeteilt wird, heißen offene Halbebenen von \ \varepsilon bezüglich der Trägergeraden \ g. Der nicht zu \ g gehörende Referenzpunkt \ Q \in \varepsilon bietet uns eine Möglichkeit zur Bezeichnung der beiden offenen Halbebenen. Die offene Halbebene, zu der alle Punkte gehören, die bezüglich \ g mit \ Q auf derselben Seite liegen, wird mit \ gQ^{+} bezeichnet, die andere offene Halbebene von \ \varepsilon bezüglich \ g und \ Q mit \ gQ^{-}.

Obige Ausführungen können als informelle Definition des Begriffs offene Halbebene dienen. Hinsichtlich wirklicher mathematischer Exaktheit der Festlegung, was denn eine offene Halbene sein möge, bedarf es einer genauereren Erklärung, was denn darunter zu verstehen wäre, dass zwei Punkte \ P und  \ Q einer Ebene \ \varepsilon auf ein und derselben bzw. auf zwei verschiedenen Seiten dieser Ebene bezüglich einer Geraden \ g liegen.

Definition IV.1: (offene Halbebene)
Es sei \ \varepsilon eine Ebene in der die Gerade \ g liegen möge. Ferner sei \ Q ein Punkt der Ebene \ \varepsilon, der nicht zur Geraden \ g gehört.
Unter den offenen Halbebenen \ gQ^{+} und \ gQ^{-} bezüglich der Trägergeraden \ g versteht man die folgenden Teilmengen der Ebene \ \varepsilon ohne die Gerade \ g :
\ gQ^{+}:=  \left\{ {P|\overline{PQ} \cap g=\phi   } \right\}
\ gQ^{-}:=  \left\{ {P|\overline{PQ} \cap g\neq\phi   } \right\}

Halbebenen

Vereinigt man die Menge der Punkte einer offenen Halbeben mit der Menge der Punkte der Trägergerade so erhält man eine Halbebene.

Definition IV.2: (Halbebene)
Es sei \ g eine Gerade der Ebene \ \varepsilon. \ gQ^+ und \ gQ^- seien die beiden offenen Halbebenen von \ \varepsilon bezüglich \ g. Unter den (geschlossenen) Halbebenen von \ \varepsilon bezüglich \ g versteht die beiden Punktmengen, die durch die Vereinigung jeder dieser beiden offenen Halbebene von \ \varepsilon bezüglich der Geraden \ g mit jeweils dieser Geraden \ g entstehen.

Bemerkung: Für die formale Beschreibung von offenen und geschlossenen Halbebenen wird jeweils dieselbe Bezsichnung verwendet: offene Halbebene: \ g Q^+, (geschlossene) Halbebene: \ g Q^+. Der weitere Gebrauch der Sprache kennzeichnet, ob es sich um eine offene oder um die geschlossene Halbene handeln soll. Aus Gründen der Vereinfachung sei vereinbart, dass \ g Q^+ bzw. \ g Q^- immer die geschlossene Halbebene meint. Soll die offene Halbebene gemeint sein, so ist dieses durch den Zusatz "offen" zu kennzeichnen.

Definition IV.3: Halbraum

Gegeben sei eine Ebene \varepsilon.

Halbraum \varepsilon Q^{+} :=\left\{ P|...    \right\} \cup \varepsilon
Halbraum \varepsilon Q^{-} :=\left\{ P| ... \right\}  \cup \varepsilon

Das Axiom von Pasch

Was Axiomatik ist und wie man Axiome zu formulieren hat, das ist erst gegen Ende des 19. Jh. von Pasch gezeigt worden; von ihm lernten es die italienischen Geometer und lernte es Hilbert.
Hans Freudenthal, Mathematik als pädagogische Aufgabe, Stuttgart 1973, S. 14)

Axiom III.2: Das Axiom von Pasch
Gegeben sei ein Dreieck \overline{ABC}. Ferner sei \ g eine Gerade, die durch keinen der drei Eckpunkte \ A, B, C geht. Wenn \ g eine der drei Seiten des Dreiecks \overline{ABC} schneidet, dann schneidet \ g genau eine weitere Seite des Dreiecks \overline{ABC}.