Lösung von Aufgabe 9.5P (SoSe 22)

Aus Geometrie-Wiki
Version vom 25. Juni 2022, 11:50 Uhr von Matze2000 (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

m sei Mittelsenkrechte der Strecke \overline{AB}. Beweisen Sie durch Kontraposition: \left| AP \right| =\left| BP \right|\Rightarrow  P\in m
Tipp: Nutzen Sie den Satz von Pasch und die Dreiecksungleichung.
Hinweis: Die Umkehrung des hier zu beweisenden Satzes sei bereits bewiesen.
Kontraposition: P ist kein Element von m, daraus folgt Abstand AP ist nicht gleich dem Abstand PB

Vor: Abstand AP ist gleich dem Abstand PB, m ist Mittelsenkrechte von der Strecke AB Beh: P ist Element von m Annahme: P ist kein Element von m

Beweis: 1. Strecke BP schneidet m ergibt leere Menge, Begründung : Annahme 2. Strecke AP schneidet m ergibt den Punkt R, Begründung: 1., (Skizze auf welcher ich den Punkt P in die Halbebene von Punkt B gezeichnet habe) 3. Abstand AR ist gleich dem Abstand RB, Begründung: 2., Mittelsenkrechtenkriterium 4. Abstand AB + Abstand BP > Abstand AP, Begründung: 3., Dreiecksungleichung(die Summe der Strecke AB + BC ist immer > AC) 5. Abstand AR + Abstand BR > Abstand AB, Begründung: Dreiecksungleichung 6. m schneidet Strecke AP und Strecke Strecke AB, Begründung: 2., Satz von Pasch 7. Abstand AR + Abstand RP = Abstand AP, Begründung 2., Zwischenrelation 8. Abstand AP ist ungleich dem Abstand AB , Begründung: 4., 5., 7. 9. Widerspruch zur Voraussetzung, Annahme ist zu verwerfen--Kwd077 (Diskussion) 12:01, 22. Jun. 2022 (CEST)

Der Beweis ist richtig. Allerdings hast du den Satz mit Widerspruch statt mit Kontraposition bewiesen. Da P auch auf der Halbebene von A liegen könnte müsstest du diesen Fall mitbeachten. --Matze2000 (Diskussion) 12:50, 25. Jun. 2022 (CEST)