Übung Aufgaben 11 (SoSe 22)
Inhaltsverzeichnis |
Aufgabe 12.1
Dargestellt ist hier die Nacheinanderausführung zweier Abbildungen und , mit und .
Hinweis: Der Punkt E hat eine besondere Bedeutung für .
Falls nichts angezeigt wird, können Sie mit folgendem Link den Servercache leeren.
- Um welche Arten von Abbildungen handelt es sich bei und ?
- Zeichnen Sie jeweils für und die passende Anzahl von Spiegelachsen in die Skizze ein.
- Wir betrachten nun die Verkettung . Durch welche Ersatzabbildung kann diese Verkettung ersetzt werden? (Begründen Sie Ihre Entscheidung).
- Zeichnen Sie die Achsen der Ersatzabbildung in die Skizze oben ein. Hinweis: Sie dürfen das Gitter im Hintergrund als Orientierung nutzen.
Lösung von Aufgabe 12.1P (SoSe_22)
Aufgabe 12.2
Das Dreieck wird an Punkt D um 90 gedreht. Das gedrehte Dreieck wird nun um den eingezeichneten Vektor verschoben. Gibt es einen Punkt der Ebene, der nun genau wieder an seinem ursprünglichen Ort liegt? Konstruieren Sie ggf. diesen Punkt und begründen Sie!
Falls nichts angezeigt wird, können Sie mit folgendem Link den Servercache leeren.
Lösung von Aufgabe 12.2P (SoSe_22)
Aufgabe 12.3
Zeigen Sie, dass die Verkettung einer Drehung mit einer Verschiebung wieder eine Drehung ergibt. Wo liegt das neue Drehzentrum P?
Lösung von Aufgabe 12.3P (SoSe_22)
Aufgabe 12.4
- Gegeben sei ein Winkel und ein Punkt P im Inneren des Winkels der nicht auf einem der Schenkel des Winkels liegt. Konstruieren Sie eine Strecke deren Endpunkte D und E jeweils auf einem der beiden Schenkel des Winkels liegen und P Mittelpunkt der Strecke ist.
- Beweisen Sie, dass Ihre Konstruktion richtig ist.