Sätze und Beweise WS 22 23

Aus Geometrie-Wiki
Version vom 6. Oktober 2022, 21:15 Uhr von Matze2000 (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Implikationen

Wechselwinkelsatz:
Wechselwinkel an geschnittenen Parallelen sind kongruent zueinander.

Betrachten wir diesen Satz etwas genauer: Es wird hier behauptet, dass Wechselwinkel kongruent zueinander sind (Behauptung), unter der Bedingung, dass die Wechselwinkel an geschnittenen parallelen Geraden betrachtet werden (Voraussetzung). Wir können den Satz also in eine Voraussetzung (A) und eine Behauptung (B) aufteilen.
In der Mathematik gehen wir davon aus, dass Sätze wahr sind, d. h. wenn die Voraussetzung erfüllt ist, muss auch die Behauptung notwendigerweise wahr sein.
Aussagenlogisch haben wir es somit mit einer Implikation zu tun:
formal: \ A \Rightarrow B

Wir können aus jedem Satz auch eine Umkehrung bilden (die nicht unbedingt wahr sein muss), d. h. wir formulieren die Behauptung als Voraussetzung und die Vorausetzung als Behauptung:
formal:\ B \Rightarrow A

Aufgabe: Formulieren Sie hier die Umkehrung des Wechselwinkelsatzes:

...Umkehrung:
Ist ein Satz und seine Umkehrung wahr, dann sind Voraussetzung und Behauptung äquivalent, formal kann man dann schreiben: \ A \Leftrightarrow B

Aufgabe: Formulieren Sie den Wechselwinkelsatz und seine Umkehrung in einem Satz als Äquivalenz:

...Äquivalenz: