Lösung von Aufgabe 6.7

Aus Geometrie-Wiki
Version vom 29. Juli 2010, 10:41 Uhr von Kuckuck (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Definieren Sie, was man unter einem Kreis \ k mit dem Mittelpunkt \ M versteht. (Bezüglich der Definition wollen wir davon ausgehen, dass wir Geometrie im Raum betreiben.)

Lösung--Schnirch 12:56, 16. Jun. 2010 (UTC)

Es sei M ein Punkt der Ebene E. Ein Kreis k, ist die Menge aller Punkte P der Ebene E, die vom Punkt M den selben Abstand haben. Der Punkt M heißt Mittelpunkt des Kreises k.

eine Frage

Wenn der Abstand 0 ist, ist dann der Punkt M ein Kreis? --Kuckuck 09:41, 29. Jul. 2010 (UTC)

vorangegangene Definitionen/Diskussionen:

Ein Kreis sei die Menge aller Punkte Pi, die den gleichen Abstand zu Punkt M haben. Diesen Punkt M nennen wir Mittelpunkt des Kreises.
Vorraussetzung: Alle Punkte Pi und der Punkt M liegen in der selben Ebene \Epsilon.
--Heinzvaneugen

Der Kreis k beschreibt die Menge aller Punkte in einer Ebene E, die denselben Abstand vom Punkt M (oder Mittelpunkt) haben. --Nicola 09:39, 8. Jun. 2010 (UTC)