Übungsaufgaben 3 EG WS2010
Aus Geometrie-Wiki
Version vom 23. November 2010, 15:57 Uhr von *m.g.* (Diskussion | Beiträge)
Alle Aufgaben beziehen sich auf die ebene Geometrie.
Aufgabe 1
Beweisen Sie: Wenn die beiden Geraden und den Punkt und nur den Punkt gemeinsam haben, dann gilt .
Aufgabe 2
Es seien und zwei zueinander parallele Geraden. Ferner sei eine Gerade, die senkrecht auf und damit auch senkrecht auf steht. Der Punkt sei der Schnittpunkt von mit und der gemeinsame Schnittpunkt von und sei mit bezeichnet.
Man beweise: .