Zusammenhang zwischen Äquivalenzrelationen und Klasseneinteilungen

Aus Geometrie-Wiki
Version vom 23. November 2010, 16:14 Uhr von Engel82 (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Gegeben sei die Menge der nachstehend dargestellten Vielecke.


Aufgabe: Teilen Sie die Menge aller dargestellten Vielecke in Klassen ein, indem Sie eine Relation formulieren, so dass alle Elemente einer Klasse in dieser Relation zueinander stehen, und dass beliebige Elemente zweier verschiedener Klassen nicht in dieser Relation zueinander stehen.

  • Relation, die gleiche Anzahl von Ecken zu haben
  • Relation, die gleiche Anzahl von Innenwinkeln zu haben
  • Relation, flächengleich zu sein
  • Relation, die gleiche Farbe zu haben
  • Relation, umfangsgleich zu sein --Schnirch 10:18, 15. Nov. 2010 (UTC) (erarbeitet in der Vorlesung am 15.11.10)



Welche Eigenschaften hat ihre Relation?
Die Menge aller Vielecke stehen in Relation n-Eck mit größer 5 zu sein. Die Eigenschaften der Relation sind erfüllt (Reflexitvität, Symmetrie, Transitivität). Somit handelt es sich um eine Äquivalenzrelation und deshalb kann man eine Klasseneinteilung vornehmen. Alle Dreiecke in eine Klasse, alle Vierecke in eine Klasse und Fünfecke in eine Klasse.--Engel82 13:12, 14. Nov. 2010 (UTC)