11
Aus Geometrie-Wiki
Version vom 23. November 2010, 16:17 Uhr von Engel82 (Diskussion | Beiträge)
Inhaltsverzeichnis |
Sätze
Hier geht es zu den Axiome WS10/11
Hier geht es zu den Definitionen WS10/11
Satz I.1
- Es seien g und h zwei Geraden. Wenn g und h nicht identisch sind, haben sie höchstens einen Punkt gemeinsam.
Satz I.2: (Kontraposition von Satz I.1)
- Es seien g und h zwei Geraden.
- Wenn g und h mehr als einen Punkt gemeinsam haben, so sind g und h identisch.
Satz I.3: (Existenz von drei Geraden)
- Es existieren mindestens drei paarweise verschiedene Geraden.
Satz I.5:
- Zwei voneinander verschiedene Ebenen haben entweder keinen Punkt oder eine Gerade gemeinsam, auf der alle gemeinsamen Punkte beider Ebenen liegen.
Satz I.6:
- Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam.
Satz I.7:
- Jede Ebene enthält (wenigstens) drei Punkte.
Satz II.1
- Aus folgt .
Satz II.2:
- Aus folgt .
Satz II.3
- Es sei mit sind paarweise verschieden.
Dann gilt oder oder .
Satz II.4
- Es sei ein Punkt einer Geraden .
Die Teilmengen , und bilden eine Klasseneinteilung der Geraden .