Lösung von Aufg. 8.1

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Beweisen Sie: Zu jeder Strecke \overline{AB} existiert genau eine Strecke \overline{AB^{*}} mit \left| AB^{*} \right| = \pi \left| AB \right| und \overline{AB} \subset \overline{AB^{*}}.


Vor: \overline{AB}
Beh: es existiert \overline{AB^{*}} mit \left| AB^{*} \right| = \pi \left| AB \right|;\overline{AB} \subset \overline{AB^{*}}.

1)\overline{AB}
__________________________________laut Vor 2) es existiert g: A \in g und B \in g_____Axiom I/1 3) es existier ein Strahl AB+______________________Def. Strahl 4) Auf dem Strahl AB+ mit dem Anfangspunkt A______________________Axiom vom Lineal existiert genau ein Punkt B* für den gilt: \left| AB^{*} \right| = \pi \left| AB \right| 5) Zw(A,B, B*), da \pi größer als 1 ist gilt:_____________4) \overline{AB^{*}} größer als \overline{AB}
6)\left| AB \right|+\left|BB^{*}\right| =\overline{AB^{*}}___________Def. Zw und 5) 7)\overline{AB}
für die gilt: (P/ Zw(A,P,B)\cup(A,B)________________Def. Strecke und 6) 8)\overline{AB^{*}} für die gilt:\overline{AB}\cup (P/ Zw(B,P,B*)______Def. Strecke 9)\overline{AB} \subset \overline{AB^{*}}.
10)Behauptung stimmt