Lösung von Aufg. 10.2
Aus Geometrie-Wiki
Version vom 22. Dezember 2010, 00:35 Uhr von Jp1234 (Diskussion | Beiträge)
Definition V.9 : (noch mehr Senkrecht)
- Eine Gerade und eine Strecke stehen senkrecht aufeinander, wenn die und die Gerade senkrecht aufeinander stehen.
- Eine Gerade und eine Strecke stehen senkrecht aufeinander, wenn die und die Gerade senkrecht aufeinander stehen.
Ergänzen Sie:
- Eine Strecke und eine Strecke stehen senkrecht aufeinander, wenn ... .
- Eine Gerade und eine Ebene stehen senkrecht aueinander, wenn es in ... .
- Eine Gerade und eine Ebene stehen senkrecht aueinander, wenn es in ... .
Eine Strecke und eine Strecke stehen senkrecht aufeinander, wenn auch die Geraden und senkrecht aufeinander stehen.
Eine Gerade g und eine Ebene stehen senkrecht aufeinander, wenn es in zwei Geraden gibt, die sich schneiden und jeweils senkrecht zu g stehen.
--Engel82 15:49, 15. Dez. 2010 (UTC)
... wenn es in zwei voneinander verschiedene Geraden gibt, die senkrecht zu g stehen. --jp1234 23:35, 21. Dez. 2010 (UTC)