Lösung von Aufg. 10.5

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Beweisen Sie Satz VI.eineinhalb

Es sei \ SW^+ die Winkelhalbierende des Winkels \angle ASB. Dann gilt | \angle ASW | = | \angle WSB | = \frac{1}{2} | \angle ASB |.


1)| \angle ASW| = | \angle WSB| __________________Def. Winkelhalbierende
2)| \angle ASW| +| \angle WSB| = | \angle ASB| ____________Winkeladditionsaxiom
3)| \angle ASW| +| \angle ASW| = | \angle ASB| ________________1) und 2)
4)2 | \angle ASW| = | \angle ASB| ____________________3)
5)| \angle ASW| = \frac{1}{2} | \angle ASB |_________________Rechnen in R und 4)
6)| \angle ASW | = | \angle WSB | = \frac{1}{2} | \angle ASB |.________________________1) und 5)--Engel82 16:35, 15. Dez. 2010 (UTC)



=> Rückfrage: Muss man nicht zuerst zeigen, dass | \angle ASW | = | \angle WSB | ? Und wenn nein, warum nicht?--Pünktchen 14:07, 16. Jan. 2011 (UTC)