Lösung von Aufg. 10.5

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Beweisen Sie Satz VI.eineinhalb

Es sei \ SW^+ die Winkelhalbierende des Winkels \angle ASB. Dann gilt | \angle ASW | = | \angle WSB | = \frac{1}{2} | \angle ASB |.


1)| \angle ASW| = | \angle WSB| __________________Def. Winkelhalbierende
2)| \angle ASW| +| \angle WSB| = | \angle ASB| ____________Winkeladditionsaxiom
3)| \angle ASW| +| \angle ASW| = | \angle ASB| ________________1) und 2)
4)2 | \angle ASW| = | \angle ASB| ____________________3)
5)| \angle ASW| = \frac{1}{2} | \angle ASB |_________________Rechnen in R und 4)
6)| \angle ASW | = | \angle WSB | = \frac{1}{2} | \angle ASB |.________________________1) und 5)--Engel82 16:35, 15. Dez. 2010 (UTC)


1) Es existiert \overline{SW} \subset\ {SW^+} Def. Strecke, Vor.
2) | \angle ASW| = | \angle WSB| Vor.
3) Es existiert  AB^+ \subset\ AB Axiom I/1, Def. Halbgerade
4) | \angle AWS| = 90 Winkelkonstruktionsaxiom
5) | \angle AWS| = | \angle BWS| Supplementaxiom
6) \overline{|AWS|} =  \overline{|BWS|} 1), 2), 5), Kongruenzsatz WSW
7) | \angle ASW| + | \angle WSB| = | \angle ASB| Winkeladditionsaxiom
8) 2| \angle ASW| = | \angle ASB| 2), Rechnen in R
9) | \angle ASW| = 1/2 | \angle ASB| Rechnen in R

q.e.d. --Pünktchen 14:54, 16. Jan. 2011 (UTC)