Lösung von Aufg. 12.6
Aufgabe 12.6
Beweisen Sie den Stufenwinkelsatz.
Vor: a//b
Beh:
Annahme: ist nicht kongruent zu
1) Es existiert genau eine Gerade h für die gilt:___________________________WInkelkonstruktionsaxiom
2) h//b________________________Umkehrung des Stufenwinkelsatzes und 1)
3) Die Gerade b hat zwei Parallelen a und h______________________ Vor. und 2) Widerspruch zum EPA
4) a=h___________________________3)
5) Annahme ist zu verwerfen
6) Behauptung stimmt --Engel82 17:57, 19. Jan. 2011 (UTC)
Musst du für diesen Beweis nicht erstmal die Umkehrung des Stufenwinkelsatz beweisen...das haben wir ja noch nicht gemacht?!
doch haben wir, erinnern Sie sich, die Umkehrung des Stufenwinkelsatzes gehört in
die Absolute, der Stufenwinkelsatz selbst aber in die Euklidische Geometrie!
Der Beweis ist korrekt!--Schnirch 10:51, 4. Feb. 2011 (UTC)
Andere Möglichkeit, könnte das gehen?
Vor.: aIIb
Beh.: IαI = IβI
1) aIIb_____________________________Vor.
2) IαI+IάI=180_______________________1), Supplementaxiom, Definition Nebenwinkel
3) IάI=Iβ’I___________________________Stufenwinkelsatz
4) IβI+Iβ’I=180_______________________1), Supplementaxiom, Definition Nebenwinkel
5) IαI+I β’I=180______________________2),3),4)
6) IαI=IβI___________________________5)
7) Behauptung stimmt
Du benutzt in deinem Beweis zum Stufenwinkelsatz ja bereits den Stufenwinkelsatz...
richtig, das wäre ein typischer Zirkelschluss und nicht erlaubt!--Schnirch 10:51, 4. Feb. 2011 (UTC)
Ich würde das so machen:
Vor.: a||b und c schneidet a und b
Beh.: =
1) und | Vor. |
2) Lot von S auf b | Definition Lot, 1) |
3) : = | Axiom vom Lineal, 2) |
4) : und und | Euklidisches Parallelenaxiom, 3) |
5) Lot von S auf d | Definition Lot, 4) |
6) | 2), 5) |
7) | Scheitelwinkelsatz, 1) |
8) | 3),6),7), SWS-Axiom |
9) | 8), Definition Dreieckskongruenz |
10) | 9), Wechselwinkelsatz |
11) | 9),10) |
--Jbo-sax 20:22, 25. Jan. 2011 (UTC)
Sie haben in Schritt 3 ein Lot konstruiert auf eine Gerade d, die Sie aber erst anschließend
in Schritt 4 erzeugen, dass ist etwas seltsam?--Schnirch 10:51, 4. Feb. 2011 (UTC)