Lösung von Aufgabe 3.3 (SoSe11)

Aus Geometrie-Wiki
Version vom 19. April 2011, 13:24 Uhr von Schnirch (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Wir gehen von folgender Definition aus:
Eine Winkelhalbierende eines Winkels \angle (p,q) ist ein Strahl l, der im Inneren des Winkels \angle (p,q) liegt, den Scheitel des Winkels \angle (p,q) als Anfangspunkt besitzt und diesen Winkel in zwei gleich große Winkel \angle (p,l) und \angle (l,q) unterteilt.
Außerdem sei folgende genetische Definition gegeben:

  • Gegeben sei ein Winkel \angle (p,q).
  • Man konstruiere auf den beiden Schenkeln des Winkels \angle (p,q) zwei Punkte P und Q, die vom Scheitel S des Winkels \angle (p,q) gleich weit entfernt sind.
  • Man konstruiere die Strecke \overline{PQ}.
  • Man konstruiere den Mittelpunkt M der Strecke \overline{PQ}.
  • Man konstruiere den Strahl w mit dem Anfangspunkt S, der durch den Punkt M verläuft.
  • Dieser Strahl w ist die Winkelhalbierende.

Beweisen Sie, dass durch diese Konstruktionsvorschrift tatsächlich die Winkelhalbierende entsprechend der angegebenen Definition entsteht.