Lösung von Aufgabe 3.5 (SoSe11)
Der Begriff Mittelsenkrechte sei folgendermaßen definiert:
Die Mittelsenkrechte einer Strecke
ist die Gerade g, die durch den Mittelpunkt von
verläuft und zu dieser Strecke
senkrecht steht.
Beweisen Sie folgenden Satz:
Die Mittelsenkrechte m einer beliebigen Strecke
ist die Menge aller Punkte P, die von A und B denselben Abstand haben:
(Beachten Sie, dass auch dieser Beweis wieder aus zwei Teilen besteht analog zur Aufgabe 3.4).
Lösung: Schritt 1 Voraussetzung:
mit Mittelpunkt M, Mittelsenkrechte m und ein beliebiger Punkt P, wobei P ԑ m
Behauptung: zu zeigen:
ist kongruent zu 
| Beweisschritt | Behauptung |
1) ist kongruent zu ![]() 2) ist kongruent zu ![]() 3) ist kongruent zu ![]() 4) Dreieck ist kongruent zu Dreieck ![]() 5) ist kongruent zu ![]() |
Voraussetzung, Def. Mittelpunkt trivial Voraussetzung, Definition Mittelsenkrechte Kongruenzsatz SWS, 1-3 5 |
→Jeder Punkt P auf der Geraden g hat den gleichen Abstand zu A und B
Schritt 2: Voraussetzung:
mit Mittelpunkt M, Mittelsenkrechte m und ein beliebiger Punkt X, für den gilt
ist kongruent zu 
Behauptung: zu zeigen:
ist kongruent zu 
| Beweisschritt | Behauptung |
1) ist kongruent zu ![]() 2) ist kongruent zu ![]() 3) ist kongruent zu ![]() 4) Dreieck ist kongruent zu Dreieck ![]() 5) ist kongruent zu |
Voraussetzung trivial Voraussetzung, Def. Mittelpunkt Kongruenzsatz SSS, 1-3 4 |
→Jeder Punkt X mit dem gleichen Abstand zu A und B liegt auf der Mittelsenkrechten g--Matthias 19:16, 27. Apr. 2011 (CEST)
Wozu zeigst du Matthias in Schritt 2, dass
ist(Behauptung 2) ?
Die benannten Winkel entsprechen alpha und betha bei ülicher Bezeichung im Dreieck. Oder meinst du vllt andere Winkel? --Tutorin Anne 19:16, 30. Apr. 2011 (CEST)
Ich meinte die Winkel
und
, habe sie falsch bezeichnet. Habs im Text berichtigt. --Matthias 15:30, 4. Mai 2011 (CEST)
Möglichkeit über Kongruenzsatz SsW:
Die Voraussetzung aus Schritt 2 bleibt wie oben identisch, das zu zeigende Element des Beweises (Behauptung) logischerweise auch.
| Beweisschritt | Behauptung |
1) ist kongruent zu ![]() 2) ist kongruent zu ![]() 3) ist kongruent zu ![]() 4) Dreieck ist kongruent zu Dreieck ![]() 5) ist kongruent zu |
Voraussetzung trivial Voraussetzung, rechter Winkel, g senkrecht auf Strecke AB Kongruenzsatz SsW, 1-3 4 |
→Jeder Punkt X mit dem gleichen Abstand zu A und B liegt auf der Mittelsenkrechten --Flo60 17:19, 4. Mai 2011 (CEST)
Richtig, so kann man diesen Teil auch beweisen. Wenn man allerdings den Kongruenzsatz SsW benutzt, ist es besser man begründet in einem Schritt (hier 3b)), dass gilt
<
. Wie lautet die Begründung?--Tutorin Anne 15:37, 6. Mai 2011 (CEST)
ist kongruent zu 
ist kongruent zu
ist kongruent zu 
ist kongruent zu Dreieck 

ist kongruent zu 
ist kongruent zu Dreieck 


