Aus den Übungen mit dem Classroompresenter (SoSe 2011)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Übung vom 13.05.2011

Aufgabe 01

Ein Kreis ist die Menge aller Punkte einer Ebene \ \epsilon, die zu einem gegebenen Punkt dieser Ebene ein und denselben Abstand haben.
Es seien \ M ein beliebiger Punkt des Raumes und \ a eine positive reelle Zahl. Im Folgenden wird jeweils eine Menge von Punkten definiert, die sich auf \ M und \ a beziehen. Welche der Mengen ist ein Kreis?

  1. K:= \lbrace P \mid  \vert \overline{MP} \vert = a \rbrace
  2. K:= \lbrace P \mid  \vert MP \vert = a \rbrace
  3. K:= \lbrace P \mid  \vert MP \vert = a \land \exist \epsilon: P\in \epsilon \land M \in \epsilon \rbrace
  4. K:= \lbrace P \mid  \vert MP \vert < a \land \exist \epsilon: P\in \epsilon \land M \in \epsilon \rbrace

Korrekte Lösung aus der Übung:
[ www.ph-heidelberg.de is not an authorized iframe site ]

Aufgabe 02

Wir setzen ebene Geometrie voraus.
Es seien \ A und \ B zwei verschiedene Punkte der Ebene.
Was für ein geometrisches Objekt wird durch die folgende Menge definiert?

M := \lbrace Q \mid \overline{AQ} \cong \overline{QB} \rbrace