Peripheriewinkelsatz und Zentriwinkel-Peripheriewinkelsatz (SoSe 11)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Definition XIX.1 (Peripheriewinkel)

Der Winkel  \angle ACB im nachfolgenden Applet ist ein Peripheriewinkel. Definieren Sie diesen Begriff:

Wenn der Scheitelpunkt C eines Winkels  \angle ACB auf einem Kreis k liegt, dann ist der Winkel ein Peripheriewinkel. --Teufelchen 16:28, 17. Jul. 2011 (CEST)

Wenn der Scheitelpunkt C eines Winkels  \angle ACB auf einem Kreis k liegt und seine beiden Schenkel den Kreis schneiden, dann ist der Winkel ein Peripheriwinkel.

Definition XIX.2 (Zentriwinkel)

Der Winkel  \angle AMB im nachfolgenden Applet ist ein Zentriwinkel. Definieren Sie diesen Begriff:

Wenn der Scheitelpunkt M eines Winkels  \angle AMB der Mittelpunkt eines Kreises k ist, dann ist der Winkel ein Zentriwinkel. --Teufelchen 16:31, 17. Jul. 2011 (CEST)

Bemerkung m.g.:

Nach der Definition wäre jeder Winkel ein Zentriwinkel. Der Begriff macht erst Sinn, wenn er als Relationsbegriff aufgefasst wird: Ein bestimmter Winkel ist Zentriwinkel von einem bestimmten Kreis.--*m.g.* 18:19, 17. Jul. 2011 (CEST)

Idee des Beweises eines Spezialfalls

Um welchen Spezialfall handelt es sich?
Können Sie einen formalen Beweis aus dem Video ableiten?



Der Zentri-Peripheriewinkelsatz

ergänzen Sie: Jeder Peripheriewinkel ist halb so groß wie sein zugehöriger Zentriwinkel.--Zeqiraj 19:40, 17. Jul. 2011 (CEST)

Satz XIX.1:(Der Zentri-Peripheriewinkelsatz)

Der Peripheriewinkelsatz

Satz XIX.2:(Der Peripheriewinkelsatz)

ergänzen Sie: Alle Peripheriewinkel über derselben Sehne sind kongruent zueinander.--Zeqiraj 19:39, 17. Jul. 2011 (CEST)