Serie 03
Inhaltsverzeichnis[Verbergen] |
Aufgabe 3.1
(alles in ein und derselben Ebene)
Es sei ein Kreis mit dem Mittelpunkt
und dem Radius
. Ferner sei
eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei
der gemeinsame Schnittpunkt der Senkrechten in
auf
mit
. Wir definieren eine Abbildung
von
auf
:
. Ist
fixpunktfrei?
Aufgabe 3.2
Es sei . Wir definieren auf
die folgende Abbildung
:
. Jedes Element des
fassen wir als Punkt auf. Hat
Fixpunkte? Wenn ja welche? (Geogebra hilft)
Aufgabe 3.3
Unter der Menge aller Punkte wollen wir die Menge aller Pixel eines LCD-Bildschirms mit FullHD-Auflösung (1920 x 1080) verstehen. Jedes dieser Pixel
hat bezüglich eines bildschirmeigenen Koordinatensystems die Koordinaten
. Wir definieren auf den Pixeln unseres Bildschirms
die folgende Abbildung
:
. Wie groß ist die Wahrscheinlichkeit, dass
einen Fixpunkt hat?
Aufgabe 3.4
Beweisen Sie: wenn eine Bewegung zwei verschiedene Fixpunkte
und
hat, dann hat ist die Gerade
eine Fixpunktgerade bezüglich
.
Aufgabe 3.5
Beweisen Sie: Wenn drei nicht kollineare Punkte Fixpunkte der Bewegung
sind, so ist
die identische Abbildung.