Zu den Lösungsversuchen
Inhaltsverzeichnis |
Aufgabe 3.1
(alles in ein und derselben Ebene) Es sei ein Kreis mit dem Mittelpunkt und dem Radius . Ferner sei eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei der gemeinsame Schnittpunkt der Senkrechten in auf mit . Wir definieren eine Abbildung von auf : . Ist fixpunktfrei?
Aufgabe 3.2
Es sei . Wir definieren auf die folgende Abbildung : . Jedes Element des fassen wir als Punkt auf. Hat Fixpunkte? Wenn ja welche? (Geogebra hilft)
Aufgabe 3.3
Unter der Menge aller Punkte wollen wir die Menge aller Pixel eines LCD-Bildschirms mit FullHD-Auflösung (1920 x 1080) verstehen. Jedes dieser Pixel hat bezüglich eines bildschirmeigenen Koordinatensystems die Koordinaten . Wir definieren auf den Pixeln unseres Bildschirms die folgende Abbildung : . Wie groß ist die Wahrscheinlichkeit, dass einen Fixpunkt hat?
1 | 2 | |
Nr. | Beschreibung des Schrittes | Begründung der Korrektheit des Schrittes |
---|---|---|
1. | gilt, wegen der Relation zwischen. | |
2. | Relation zwischen bleibt nach der Ausführung der Bewegung erhalten. | |
3. | --> P=P' | folgt aus (1.) und (2.) und der Vss, dass A und B Fixpunkte sind. |
Deshalb wird auch Punkt P bei der Bewegung auf sich selbst abgebildet.
(Ich bin mir nicht sicher, ob ich alles bedacht habe, vielleicht kann noch jemand was dazu sagen/korrigieren. Warum bei der Tabelle über der Spaltenbeschriftung noch 1. und 2. steht ist mir auch schleierhaft.) Pipi Langsocke 12:05, 10. Nov. 2011 (CET)
Aufgabe 3.5
Beweisen Sie: Wenn drei nicht kollineare Punkte Fixpunkte der Bewegung sind, so ist die identische Abbildung.