12)
Aus Geometrie-Wiki
Version vom 28. November 2011, 15:16 Uhr von Wookie (Diskussion | Beiträge)
Es sei eine Gerade und
ein Punkt, der nicht zu
gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene
, die sowohl alle Punkte von
als auch den Punkt
enthält.
Voraussetzung: Gerade g, Punkt P: P g
Behauptung: Ebene E: g
E
P
E
Beweis:
1) P ![]() |
Vor. |
2) ![]() ![]() ![]() |
Axiom I/2 |
3) nkoll(P, Q, R) | Axiom I/3, 1), 2) |
4) ![]() ![]() |
Axiom I/4, 3) |
5) P ![]() ![]() ![]() |
4) |