12)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Definition über zwei Geradenspiegelungen

Definition: (Verschiebung)

Die NAF zweier Geradenspiegelungen S_b \circ S_a mit a || b heißt Verschiebung.

Eigenschaften von Verschiebungen

Die identische Abbildung als Verschiebung

Satz: (\operatorname{id} als Verschiebung

Es sei V=S_b \circ S_a eine Verschiebung.
Wenn a||bdann V=\operatorname{id}

Parallelität

Satz: (Parallelität bei Geradenspiegelungen)

Es sei V=S_b \circ S_a eine Verschiebung. Für jede Gerade g und ihr Bild g' bei V gilt: g||g'.

Beweis

Satz: (über die Verschiebungsweite)

Es sei V=S_b \circ S_a eine Verschiebung V. Für jedes Paar (Originalpunkt P, Bildpunkt P' bei V) gilt: |PP'| = 2|ab|.