Auftrag der Woche 5 WS: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: Im nachstehenden Applet sind verschiedene Figuren dargestellt. Diskutieren Sie mögliche Klasseneinteilungen auf der Menge der dargestellten Figuren und geben Sie jewei...)
 
 
Zeile 1: Zeile 1:
 
Im nachstehenden Applet sind verschiedene Figuren dargestellt. Diskutieren Sie mögliche Klasseneinteilungen auf der Menge der dargestellten Figuren und geben Sie jeweils die Relation an, die zu der entsprechenden Klasseneinteilung führt.<br /><br />
 
Im nachstehenden Applet sind verschiedene Figuren dargestellt. Diskutieren Sie mögliche Klasseneinteilungen auf der Menge der dargestellten Figuren und geben Sie jeweils die Relation an, die zu der entsprechenden Klasseneinteilung führt.<br /><br />
 
<ggb_applet width="720" height="500"  version="3.2" ggbBase64="UEsDBBQACAAIAExgpzwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Z1bd6LIFsefz3wKlg/nTZoqrq6TzKwk5tLTas9M+rJWXs5CJcqJYkaxu5NPf6ooQDaoRISe2vaDaRRL+P3rsnftqs3Zbz/mM+Wbt1z5i+C8RVStpXjBaDH2g8l5ax0+tp3Wb7/+cjbxFhNvuHSVx8Vy7obnLV2lLf7+2v/1l3+draaL74o7i0754nvfz1uP7mzltZTV89Jzx6up54XgfXf9w5/57vLl4/B/3ihcbT4QhbwPntfsV8Llmr03mo97/io5fBf94PPMD7v+N3/sLZXZYnTeoia7dPa/L94y9Efu7LxlaOIdWvyQvaXzT6eLpf+6CEJ++qbwR/aOoqz8V48Rofy9s3fRjZ5569HMH/tuwG8mug52kqJ898fhlJ2rUYOV6fmTKbtYS6OiuNFisRzfv6xCb678ePCWC3ZpEegXcWDaFj9asetiP2hq0UfZo6gU79u9F4ZMlpXi/vBWCZvJ0h9n//9+dbmYjVOczws/CK/c53C9jBTV47fuwxdePPulJb/ai2Ay8+L3CAM+9UZPw8WPe4FAF0V/enmOvhJdznBytZgtlsqSwzXZCfHfofgbncOvMz1Li87RojPiMnih6eekQ6Mzor9D8Tc6a+YH4tLi+ybJTRMt+Rl/pfA3OERWERMcM3foMV1byjrww15ywPR/2twpP3+wng9ZA8jWgLRIUlORZ+9yVefsyVsG3kzUj4Dpul6sV8o3XhGFdNF1jL2RP2eH4oMYiMvF+swuQLw79iZLL7lu0XoEruhTLVsHc2+fvUsugl/Dil3rKGTdALufkN8Lb6UhayHnrfvRNPCXo2lLGbsh/4Q3hZk391g7CaNaEVWqlM9FK+0UFlH7zvHL3CH7fGsViSqTO3ueuuydpA3M3BfW3LP3FRXYX4zh3boBoxbdCmt0z7wArsuz543jLi6Mq7LyzIqMGkbmkiJWK+XHeaujOqwpsotRLdawX8WXo3NEI+KNP/pdPdZYMCmhc3kidIgW49FrxXN1KnhII3i6p4KHNtK4rk8ND6kVz82p4Ekal1YrnttTwaM1gufuRPB0Kret0WI+d4OxErhz9kN/LGYvk0UQUfG5x6K4Grd+FJfwYV5xKR/OFFfn3bbiGrx7UlyTN0PFtXh1U1ybYxXI1mFSBLMRZ8wEJ6IkV5Q0FCWNREljUZInSnoUJU3YH+e8NRWXHV/sFlHFZSeypb8Gze1wyuzawFutuOWZon23vwpsbOhsDTAJ8BD4YVoHyCF1YHdNXXkTfpReiFvH3eyo0Ptu58AqvamUbeETxjWZVUpbJVbeBdpzF97fgThnJVwRf8585JEfppVrxlvE+yBkjokXGfpFf+PJ8565m/cx+LR0gxV39sU5GT/mjfyH2PhrOfxtbrdp2X+I1RhhUyPfGNrEVA0gB8GrxhihGvAfja2LRBxuraKVw8Mmh6Z2cv8iOdqbxkJQjx2P+ATRoALM7taBQDZeNSbY1GiXtQ/WPAwDryBTdIKUjB/MHwOfItIGOsjviw5yHIhB5iFrqplIZB3jIXf9mRt62x1koprCsX1f8H8v/u0+L1b/+S8pc2RB1CH90j87S5Exm4yCzRpPCNcP9bIU6mUVqJfyQTXVDoCqR1BNbvHUDfWqFOpVFahX8kG1+YjYGMduKcduFY5d+Tg6rHI218ivSzleV+F4LTFH2kR9vCnleFOF4418HNN2zQZyM28T10z1tpTqbRWqt/JR3T4E/QTEd6WI76ogvpMP8XbT6djeYEfEJr19EbnJHNLsaC0iOZlDI9t3ishO5tDK1l0R6cmKszXiA6/EFYdx/Cc94FGg9IDHgtIDHhFKD3hcKD3g0aH0gMeI4oOSWrI9UgSqSyMRo91Vqql4UcyjOde6gVbSjjqCaJrcBB40cUQrsVh7yfRHDuJpqCFGgTZBJQMMDA4VE7W2aoN5QhOvPiOM+mTaTxz009UOXg3GmDVIo0nUUQ2CdD6wEFtCqsi26dp22kqoqRL7NGKxjxgFysSbto4rmtpxwNuIW9AEo0DtPU1om6FGDbUD3kccvZ1iFQyMQpSoloVmEHp71KWtlYdd6CFzB5svSaOloZK4uWmqQWF7M5uKvOwDe1kF7KWMYK0UbAeCpU0FX/ZxvarC9Uo+rmamwjbOtVvOtVuFa1dGrtZP7Aiuy8FeVwF7LTFYVogN57wbi9bs43pTheuNjFxJwtWEXJ2mwjX7sN5WwXorH1ZjU10bx3pXjvWuCtY7GbGSRnqB/VEaCqM0FEZpKIzSUBiloTBKQ2GUhsIoDS0Il4t/UBClSeJFQxgvGsF40RjGizwYL3qE8aJJ5nATsymP7e2N2tAGPTNi6lE94+sGo43+PytuU08s6vC7OmIKx0wsk8QScRDP/g/RyqBBGbilaOb7MrSyjJDK0i40j7auaoWMIHiEGCMWAk5kklywRnVArEZD3Il5eEWCYYB4w0PadphIxql0aY9IRUpGmsxAQ+Gcv9xTzG+K0iBUZW/LoapGTqXhTNFKtHcEYhKBOA2mAQh6+L+fyu4hS7Vpsgi+qd1Dm/mV3wtu+sXb1jZuiWJJM7diqkTkKDFUrf45qkLIqsjw8nCGl5IxNFQrycBl1s+wEJ4qMrw6nOGVdAxJgwwLoagiw+7hDLuSMWS9IJwdtZtr2YUYVJHo9eFEr7EQbaCOFqJPRaI3hxO9kYxo2s7NJmplIdRUZHh7OMNb6RhaDTIsxJWKDO8OZ3gnGcOM3XNcW94bQwIRJBA/AtEjEDsCkSMQNwJRo4IoMPoCI0YURowojBhRGDGiMGJEYcSIwogRhRGj0kjjvoiRfLt8Pj4+rrwwmvqi8azK7up1eCypyQhZI6uB83Pl7D/QZ8a/7wefKFo+vmd34CwGWklGOCUpBpV01YF2JF5Nxsg1SabziOrAzFmINfHQa7KJicNpch2vKI84RSmEj6hqgg3yFPEYP8GqSa6dGKcznkyxS5KuTzARqQCd8w8nkm9dj/uuTjrGv9Gl3wendyJwrCbg9E8EjhnDseuEMzgROHpVOG+ZKfsgZqp6YoaqL2amBrtmt+KV0E/i7Jk4ey7mr4JKc0+1jDuS5JZ5wjaGanHILxlD7bQwBGNonv4MF32azyXNV77ipT/HRT+dtqNJp2pgph/got9OKn9ivluY4EMr4+OprOaKFt5zUSxVr3838od8WPNjwcb4UCWl4eZLslRuxlHPb+2OAp0NbELslVPtVaHak44qUc2fRrVfTrVfhWpfOqp0e101m6A6KKc6qEJ1IB3VHT3AsVR3OHAwlWgvc0izVU44dmWJSSks7Sm7dGKWXToxzy6dCI5IMkqBfI04gumTqzXjZ21XfapvScWOervvpo43i5MUcLZqZBPA8XQaaOy0goOIU5P0gYGZMF0HboVANPNd8BtxilJ4imDUuaNVIcCpAsm5kdHmYRCYQ7TVDlo1f5yKW0ls1bRilYzG/Eqixmss/9jpVh6UheUDCIvKYFSyrzrg8Vnxk5uIptoNPDqjV8q1V4VrTzquumo5TpMk+6Uk+1VI9qUjSVUD1FCxf9NR9QagDkqhDqpAHUgHdVezPxrrfm+SQm+SQm+SQm9yZwIlCkt7gr7pDPqmc5hAKTgqCRIFQjbjVXJLJpX75/mUjW7s3n1TNYQZC/l2hM3mqKZtm6ewmGqGUyGqwqW4jpVMAsCkCB09UsxQNZAGDnGuhDlOwTLRS/joev5TfEjoqB3TyXyEeNYmwClRe0ejSlxVTaWEZFLVEkwaQaPpz1NxVZ24WTnHLbTq+8vlYrndT/1zp3uqV3FPdWnsVFLTKrWt8Hq74PWqwOvJB09rEF5/F7x+FXh9+eAls4AHr6x9A7zBLniDKvAG8sGrvGb7EG9Sh96kDr1JHXqTepk3qUNvkkJvkkJvkkJvstoGaQp0Oy1vssmNH02avsmqVZrWWAyW0y6PEZkK6QK+JP5FcC9exalC0haSNaxt4mBWIcCpQn4ta5siXs3616n4cpZqOPFqVpi3WDvqgTA9pmjOyPlTmCN/FcwWf7+twStHitWvWOcPFqemuLsDJwbNdNVQPo1qEpaHkyE1NY9qPri/ywev4IHLY8jzZ3PoxE5fknR+ukEMK30xmvLNi1B7h0PtSQa1owJ4lhn3KNRyaGfz0pTLXmTaP5xpXzKmtgrhmfE6bsfULTN9qb+eDnYxHRzOdCAZU0cllHTM9MWKzcKORg09fTlq8c1eBx+498C5B659iWMP3XoduvU6dOt16NaXzsLsc+tlXHicyXxGxDqKtr27Lhzu9dcyk/FTV8Gy2gy6XcNKcjxlug3+IroOnYB+Rj+Bhcv4RCO58dOwEzsRmCpWYidSNXu2btknEFpGKFpmJGEvyaPfMiMJeyGxH9Umdm7wwStZgFWydkGdjhFPzxW0FO1M69imtXmRWbO3OHZw11LRxrs/xLq7l8aus1TmsRX8j2idZcaEdhpw6sqAfjoE6CeJgBp2tqGQZBKbGo7taPGLZdfv0ZUB/XwI0M/SALVVXc92JVYM1NazY4JzlOux3Z0rA/rlEKBfJAJKaNZrS5o8M5TS+mnb8Uq8Wn25e0Hyk/C7Pgt/68suny0Owq7E2aE4ey28sm+VvLEGg6v8MUWTWKKhOKyQgdqIjdc6/LBVgybGvrs9xpS3wFSiHZuFenYyh8bJ3Nsd1SFZ0x9x0soQm1TMGrThXLARa+UAV9lw4uTIVidzrk0QJ31dI9QKWuLxk7b5UwOzTpWpmXq8Ids0ssY7YnfrGzaxCprEz6MpiMi3Ponh2XaywzaiOShoH309kVSKUZaveK/fgevd9uF5OBU8ViN4Lv7x3Cy1158jl4hvt8C/Cpv6QdjUF7uztBjiRDfZSfddmN+vlexuA4vdXYvh7Ta6kaShYSe3zItuCkMwkuQV+I6Nf5qpc7POjmIW4BWbAIV0kRTVOsfc01O3DYY419iR9AHAdvrwo0rD4dYt/l/z+eIutwyIX6tkjNt8SZZZP75wN1muSOtH+fAWlA9VUD7Ih9JuFOVFMuO8H+bVYRivZAKY1kX7SIA7rFw4c/+QOaQpuK1WL/ziKLV+s0uNXo9IRWiAyiztiqA4It+mddjDo2Y3VjecpFCLs0dTRDMrBXsYZ+61NC1hugVIUx2QfA1xPrxXnJoU8uGJvlxiGd5uB77FDKxgBMoz7JqqbsVzS3ZjJuBbLMAK9p88FK1GKabW316O3cOMv65Mxl9aC+0j+e01/oDpJ0B2Sw0/8aVxzuxL0oe9HpUvzGh8KXjF/d0Zsy8ebmsx+8bY8ukUEu5G7Vvike1NRh82FUje9G7bqpXdX0kQJdzdYfRh06Sdt/qiPhyNJqynDlbsg6gsfjzxFhNvuHR//T9QSwcIX1NQjq0PAAC13AAAUEsBAhQAFAAIAAgATGCnPF9TUI6tDwAAtdwAAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAADnDwAAAAA=" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
<ggb_applet width="720" height="500"  version="3.2" ggbBase64="UEsDBBQACAAIAExgpzwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Z1bd6LIFsefz3wKlg/nTZoqrq6TzKwk5tLTas9M+rJWXs5CJcqJYkaxu5NPf6ooQDaoRISe2vaDaRRL+P3rsnftqs3Zbz/mM+Wbt1z5i+C8RVStpXjBaDH2g8l5ax0+tp3Wb7/+cjbxFhNvuHSVx8Vy7obnLV2lLf7+2v/1l3+draaL74o7i0754nvfz1uP7mzltZTV89Jzx6up54XgfXf9w5/57vLl4/B/3ihcbT4QhbwPntfsV8Llmr03mo97/io5fBf94PPMD7v+N3/sLZXZYnTeoia7dPa/L94y9Efu7LxlaOIdWvyQvaXzT6eLpf+6CEJ++qbwR/aOoqz8V48Rofy9s3fRjZ5569HMH/tuwG8mug52kqJ898fhlJ2rUYOV6fmTKbtYS6OiuNFisRzfv6xCb678ePCWC3ZpEegXcWDaFj9asetiP2hq0UfZo6gU79u9F4ZMlpXi/vBWCZvJ0h9n//9+dbmYjVOczws/CK/c53C9jBTV47fuwxdePPulJb/ai2Ay8+L3CAM+9UZPw8WPe4FAF0V/enmOvhJdznBytZgtlsqSwzXZCfHfofgbncOvMz1Li87RojPiMnih6eekQ6Mzor9D8Tc6a+YH4tLi+ybJTRMt+Rl/pfA3OERWERMcM3foMV1byjrww15ywPR/2twpP3+wng9ZA8jWgLRIUlORZ+9yVefsyVsG3kzUj4Dpul6sV8o3XhGFdNF1jL2RP2eH4oMYiMvF+swuQLw79iZLL7lu0XoEruhTLVsHc2+fvUsugl/Dil3rKGTdALufkN8Lb6UhayHnrfvRNPCXo2lLGbsh/4Q3hZk391g7CaNaEVWqlM9FK+0UFlH7zvHL3CH7fGsViSqTO3ueuuydpA3M3BfW3LP3FRXYX4zh3boBoxbdCmt0z7wArsuz543jLi6Mq7LyzIqMGkbmkiJWK+XHeaujOqwpsotRLdawX8WXo3NEI+KNP/pdPdZYMCmhc3kidIgW49FrxXN1KnhII3i6p4KHNtK4rk8ND6kVz82p4Ekal1YrnttTwaM1gufuRPB0Kret0WI+d4OxErhz9kN/LGYvk0UQUfG5x6K4Grd+FJfwYV5xKR/OFFfn3bbiGrx7UlyTN0PFtXh1U1ybYxXI1mFSBLMRZ8wEJ6IkV5Q0FCWNREljUZInSnoUJU3YH+e8NRWXHV/sFlHFZSeypb8Gze1wyuzawFutuOWZon23vwpsbOhsDTAJ8BD4YVoHyCF1YHdNXXkTfpReiFvH3eyo0Ptu58AqvamUbeETxjWZVUpbJVbeBdpzF97fgThnJVwRf8585JEfppVrxlvE+yBkjokXGfpFf+PJ8565m/cx+LR0gxV39sU5GT/mjfyH2PhrOfxtbrdp2X+I1RhhUyPfGNrEVA0gB8GrxhihGvAfja2LRBxuraKVw8Mmh6Z2cv8iOdqbxkJQjx2P+ATRoALM7taBQDZeNSbY1GiXtQ/WPAwDryBTdIKUjB/MHwOfItIGOsjviw5yHIhB5iFrqplIZB3jIXf9mRt62x1koprCsX1f8H8v/u0+L1b/+S8pc2RB1CH90j87S5Exm4yCzRpPCNcP9bIU6mUVqJfyQTXVDoCqR1BNbvHUDfWqFOpVFahX8kG1+YjYGMduKcduFY5d+Tg6rHI218ivSzleV+F4LTFH2kR9vCnleFOF4418HNN2zQZyM28T10z1tpTqbRWqt/JR3T4E/QTEd6WI76ogvpMP8XbT6djeYEfEJr19EbnJHNLsaC0iOZlDI9t3ishO5tDK1l0R6cmKszXiA6/EFYdx/Cc94FGg9IDHgtIDHhFKD3hcKD3g0aH0gMeI4oOSWrI9UgSqSyMRo91Vqql4UcyjOde6gVbSjjqCaJrcBB40cUQrsVh7yfRHDuJpqCFGgTZBJQMMDA4VE7W2aoN5QhOvPiOM+mTaTxz009UOXg3GmDVIo0nUUQ2CdD6wEFtCqsi26dp22kqoqRL7NGKxjxgFysSbto4rmtpxwNuIW9AEo0DtPU1om6FGDbUD3kccvZ1iFQyMQpSoloVmEHp71KWtlYdd6CFzB5svSaOloZK4uWmqQWF7M5uKvOwDe1kF7KWMYK0UbAeCpU0FX/ZxvarC9Uo+rmamwjbOtVvOtVuFa1dGrtZP7Aiuy8FeVwF7LTFYVogN57wbi9bs43pTheuNjFxJwtWEXJ2mwjX7sN5WwXorH1ZjU10bx3pXjvWuCtY7GbGSRnqB/VEaCqM0FEZpKIzSUBiloTBKQ2GUhsIoDS0Il4t/UBClSeJFQxgvGsF40RjGizwYL3qE8aJJ5nATsymP7e2N2tAGPTNi6lE94+sGo43+PytuU08s6vC7OmIKx0wsk8QScRDP/g/RyqBBGbilaOb7MrSyjJDK0i40j7auaoWMIHiEGCMWAk5kklywRnVArEZD3Il5eEWCYYB4w0PadphIxql0aY9IRUpGmsxAQ+Gcv9xTzG+K0iBUZW/LoapGTqXhTNFKtHcEYhKBOA2mAQh6+L+fyu4hS7Vpsgi+qd1Dm/mV3wtu+sXb1jZuiWJJM7diqkTkKDFUrf45qkLIqsjw8nCGl5IxNFQrycBl1s+wEJ4qMrw6nOGVdAxJgwwLoagiw+7hDLuSMWS9IJwdtZtr2YUYVJHo9eFEr7EQbaCOFqJPRaI3hxO9kYxo2s7NJmplIdRUZHh7OMNb6RhaDTIsxJWKDO8OZ3gnGcOM3XNcW94bQwIRJBA/AtEjEDsCkSMQNwJRo4IoMPoCI0YURowojBhRGDGiMGJEYcSIwogRhRGj0kjjvoiRfLt8Pj4+rrwwmvqi8azK7up1eCypyQhZI6uB83Pl7D/QZ8a/7wefKFo+vmd34CwGWklGOCUpBpV01YF2JF5Nxsg1SabziOrAzFmINfHQa7KJicNpch2vKI84RSmEj6hqgg3yFPEYP8GqSa6dGKcznkyxS5KuTzARqQCd8w8nkm9dj/uuTjrGv9Gl3wendyJwrCbg9E8EjhnDseuEMzgROHpVOG+ZKfsgZqp6YoaqL2amBrtmt+KV0E/i7Jk4ey7mr4JKc0+1jDuS5JZ5wjaGanHILxlD7bQwBGNonv4MF32azyXNV77ipT/HRT+dtqNJp2pgph/got9OKn9ivluY4EMr4+OprOaKFt5zUSxVr3838od8WPNjwcb4UCWl4eZLslRuxlHPb+2OAp0NbELslVPtVaHak44qUc2fRrVfTrVfhWpfOqp0e101m6A6KKc6qEJ1IB3VHT3AsVR3OHAwlWgvc0izVU44dmWJSSks7Sm7dGKWXToxzy6dCI5IMkqBfI04gumTqzXjZ21XfapvScWOervvpo43i5MUcLZqZBPA8XQaaOy0goOIU5P0gYGZMF0HboVANPNd8BtxilJ4imDUuaNVIcCpAsm5kdHmYRCYQ7TVDlo1f5yKW0ls1bRilYzG/Eqixmss/9jpVh6UheUDCIvKYFSyrzrg8Vnxk5uIptoNPDqjV8q1V4VrTzquumo5TpMk+6Uk+1VI9qUjSVUD1FCxf9NR9QagDkqhDqpAHUgHdVezPxrrfm+SQm+SQm+SQm9yZwIlCkt7gr7pDPqmc5hAKTgqCRIFQjbjVXJLJpX75/mUjW7s3n1TNYQZC/l2hM3mqKZtm6ewmGqGUyGqwqW4jpVMAsCkCB09UsxQNZAGDnGuhDlOwTLRS/joev5TfEjoqB3TyXyEeNYmwClRe0ejSlxVTaWEZFLVEkwaQaPpz1NxVZ24WTnHLbTq+8vlYrndT/1zp3uqV3FPdWnsVFLTKrWt8Hq74PWqwOvJB09rEF5/F7x+FXh9+eAls4AHr6x9A7zBLniDKvAG8sGrvGb7EG9Sh96kDr1JHXqTepk3qUNvkkJvkkJvkkJvstoGaQp0Oy1vssmNH02avsmqVZrWWAyW0y6PEZkK6QK+JP5FcC9exalC0haSNaxt4mBWIcCpQn4ta5siXs3616n4cpZqOPFqVpi3WDvqgTA9pmjOyPlTmCN/FcwWf7+twStHitWvWOcPFqemuLsDJwbNdNVQPo1qEpaHkyE1NY9qPri/ywev4IHLY8jzZ3PoxE5fknR+ukEMK30xmvLNi1B7h0PtSQa1owJ4lhn3KNRyaGfz0pTLXmTaP5xpXzKmtgrhmfE6bsfULTN9qb+eDnYxHRzOdCAZU0cllHTM9MWKzcKORg09fTlq8c1eBx+498C5B659iWMP3XoduvU6dOt16NaXzsLsc+tlXHicyXxGxDqKtr27Lhzu9dcyk/FTV8Gy2gy6XcNKcjxlug3+IroOnYB+Rj+Bhcv4RCO58dOwEzsRmCpWYidSNXu2btknEFpGKFpmJGEvyaPfMiMJeyGxH9Umdm7wwStZgFWydkGdjhFPzxW0FO1M69imtXmRWbO3OHZw11LRxrs/xLq7l8aus1TmsRX8j2idZcaEdhpw6sqAfjoE6CeJgBp2tqGQZBKbGo7taPGLZdfv0ZUB/XwI0M/SALVVXc92JVYM1NazY4JzlOux3Z0rA/rlEKBfJAJKaNZrS5o8M5TS+mnb8Uq8Wn25e0Hyk/C7Pgt/68suny0Owq7E2aE4ey28sm+VvLEGg6v8MUWTWKKhOKyQgdqIjdc6/LBVgybGvrs9xpS3wFSiHZuFenYyh8bJ3Nsd1SFZ0x9x0soQm1TMGrThXLARa+UAV9lw4uTIVidzrk0QJ31dI9QKWuLxk7b5UwOzTpWpmXq8Ids0ssY7YnfrGzaxCprEz6MpiMi3Ponh2XaywzaiOShoH309kVSKUZaveK/fgevd9uF5OBU8ViN4Lv7x3Cy1158jl4hvt8C/Cpv6QdjUF7uztBjiRDfZSfddmN+vlexuA4vdXYvh7Ta6kaShYSe3zItuCkMwkuQV+I6Nf5qpc7POjmIW4BWbAIV0kRTVOsfc01O3DYY419iR9AHAdvrwo0rD4dYt/l/z+eIutwyIX6tkjNt8SZZZP75wN1muSOtH+fAWlA9VUD7Ih9JuFOVFMuO8H+bVYRivZAKY1kX7SIA7rFw4c/+QOaQpuK1WL/ziKLV+s0uNXo9IRWiAyiztiqA4It+mddjDo2Y3VjecpFCLs0dTRDMrBXsYZ+61NC1hugVIUx2QfA1xPrxXnJoU8uGJvlxiGd5uB77FDKxgBMoz7JqqbsVzS3ZjJuBbLMAK9p88FK1GKabW316O3cOMv65Mxl9aC+0j+e01/oDpJ0B2Sw0/8aVxzuxL0oe9HpUvzGh8KXjF/d0Zsy8ebmsx+8bY8ukUEu5G7Vvike1NRh82FUje9G7bqpXdX0kQJdzdYfRh06Sdt/qiPhyNJqynDlbsg6gsfjzxFhNvuHR//T9QSwcIX1NQjq0PAAC13AAAUEsBAhQAFAAIAAgATGCnPF9TUI6tDwAAtdwAAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAADnDwAAAAA=" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 +
[[Category:Einführung_Geometrie]]

Aktuelle Version vom 17. November 2010, 00:09 Uhr

Im nachstehenden Applet sind verschiedene Figuren dargestellt. Diskutieren Sie mögliche Klasseneinteilungen auf der Menge der dargestellten Figuren und geben Sie jeweils die Relation an, die zu der entsprechenden Klasseneinteilung führt.