Lösung von Aufg. 12.1 S: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 2: Zeile 2:
 
Man beweise: Ein Punkt <math>\ P</math> gehört genau dann zur Winkelhalbierenden des Winkels <math>\ \alpha</math>, wenn er zu den Schenkeln von <math>\ \alpha</math> jeweils denselben Abstand hat.<br />
 
Man beweise: Ein Punkt <math>\ P</math> gehört genau dann zur Winkelhalbierenden des Winkels <math>\ \alpha</math>, wenn er zu den Schenkeln von <math>\ \alpha</math> jeweils denselben Abstand hat.<br />
  
Lösungsversuch Lerngruppe:<br />
+
Lösungsversuch Lerngruppe Nummero6/Tchu Tcha Tcha:<br />
  
 
d.h.<br />
 
d.h.<br />
Zeile 20: Zeile 20:
 
(9)<math>\overline{P L_A} \tilde {=} \overline{P L_B}</math> // (7), Dreieckskongruenz<br />
 
(9)<math>\overline{P L_A} \tilde {=} \overline{P L_B}</math> // (7), Dreieckskongruenz<br />
 
<br />
 
<br />
'''2)''' Fortsetzung folgt...
+
'''2)''' Fortsetzung folgt...<br />--[[Benutzer:Nummero6|Tchu Tcha Tcha]] 12:12, 13. Jul. 2012 (CEST)
  
  
 
<br />
 
<br />
 
[[Kategorie:Einführung_S]]
 
[[Kategorie:Einführung_S]]

Version vom 13. Juli 2012, 12:12 Uhr

Aufgabe 12.1

Man beweise: Ein Punkt \ P gehört genau dann zur Winkelhalbierenden des Winkels \ \alpha, wenn er zu den Schenkeln von \ \alpha jeweils denselben Abstand hat.

Lösungsversuch Lerngruppe Nummero6/Tchu Tcha Tcha:

d.h.
1)P\in w_\alpha \Rightarrow \left| \ P,SA^{+} \right| \tilde {=} \left| \ P,SB^{+} \right|
2)\left| \ P,SA^{+} \right| \tilde {=} \left| \ P,SB^{+} \right| \Rightarrow P\in w_\alpha
Skizze folgt..
zu 1)
(1)\left| \angle BSP  \right| = \left| \gamma  \right| \tilde {=} \left| \angle PSA  \right| = \left| \beta  \right| // Vor.
(2)\overline{SP} \tilde {=} \overline{SP} // trivial
(3)Fehler beim Parsen(Syntaxfehler): \exists l_1:l_1 \cap w_\alpha=\{P}\wedge l_1 \cap SA=\{L_A}\wedge l_1 \perp SA

// Ex. & Eind. der Senkrechten durch P zu SA

(4) \overline{L_A P} ist Lot // (3), Def. Lot
(5)\left| \overline{S L_A} \right| = \left| d \right| // Axiom II/1 (Abstandsaxiom)
(6)\exists L_B:L_B \in \ SB^{+} \wedge \left| \overline{S L_B} \right| = \left| d \right| // Axiom v. Lineal, (5)
(7)\overline{PS L_B} \tilde {=} \overline{PS L_A} // (1),(2),(5),(6), SWS
(8)da \left| \angle SL_AP \right| = 90 muss auch \left| \angle SL_BP \right| = 90 // (3),(7), Dreieckskongruenz
(9)\overline{P L_A} \tilde {=} \overline{P L_B} // (7), Dreieckskongruenz

2) Fortsetzung folgt...
--Tchu Tcha Tcha 12:12, 13. Jul. 2012 (CEST)