Lösung von Testaufgabe 2.4 SS12

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Lösungsversuch Nummero6/Tchu Tcha Tcha:
Vor.: Kreis k mit Durchmesser \overline{AB}
C \in Innere (k)
Beh.: \left|\gamma  \right| \neq 90
Annahme: \left|\gamma  \right| = 90

Test 2.4.png

(1) \left|\gamma  \right| = 90 // Annahme
(2) \ AC^{+} muss den Kreis k in einem weiteren Punkt C' (oBdA) schneiden, da nach Voraussetzung C im Inneren von k liegt und A \epsilon k (Durchmesser)
(3) \left|\delta  \right| = 90 // Vor., (2), Satz des Thales
(4) \left|\alpha'  \right| = 90 // (1), Def. NW, Def. suppl., Supplementaxiom, Def. rechter Winkel
(5) Widerspruch (zum Korollar 1) im Dreieck \overline{BCC'} // (2),(3),Korollar 1 (mindestens 2 Innenwinkel sind spitz)
(6) \left|\alpha'  \right| \neq 90 // (5)
(7) \left|\gamma  \right| \neq 90 // (6), Def.NW, Def. suppl.,Supplementaxiom, Rechnen in R
(8) Widerspruch zur Annahme // (7)
(9) Behauptung stimmt // (8)
q.e.d.
--Tchu Tcha Tcha 19:06, 14. Jul. 2012 (CEST)