Serie 01

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabe 1.1

Definieren Sie für die ebene Geometrie den Begriff Bewegung
(Definition 1.1)

Eine Bewegung ist eine Abbildung der Ebene auf sich, bei der Streckenlängen erhalten bleiben. Pipi Langsocke 12:45, 19. Okt. 2011 (CEST)

 Es \ sei \ E \ eine \ Ebene, \ \varphi \ eine \ Abbildung \ mit \ \varphi : \ E \ -> \  E.
 \varphi \ heisst \ Bewegung \ genau \ dann, \ wenn \ \varphi \ laengenerhaltend \ ist.
--Peterpummel 12:46, 19. Okt. 2011 (CEST)

Aufgabe 1.2

Definieren Sie die Begriffe injektiv und surjektiv

injektiv: Es seien eine Ausgangsmenge M und eine Zielmenge N. Injektivität ist dann gegeben, wenn gilt: Jedes Element der Menge M kann einem Element der Zielmenge N eindeutig zugeordnet werden.

surjektiv: Es seien eine Ausgangsmenge M und eine Zielmenge N. Surjektivität ist dann gegeben, wenn gilt: Jedes Element der Zielmenge N besitzt mindestens ein Urbild in der Ausgangsmenge M. Pipi Langsocke 12:48, 19. Okt. 2011 (CEST)

Aufgabe 1.3

Ergänzen Sie die folgende Tabelle
Abbildung Umkehrabbildung
x^2, x\ge 0 Wurzel(x) , x \ge 0 (Sorry für die Schreibweise!) -Pipi Langsocke 13:11, 19. Okt. 2011 (CEST)
\sin (x), 0 \le x \ge 1  \arcsin (x) -Pipi Langsocke 13:11, 19. Okt. 2011 (CEST)
Drehung um Z mit Drehwinkel  \alpha Drehung um Z mit dem Drehwinkel  - \alpha . -Pipi Langsocke 13:11, 19. Okt. 2011 (CEST)
Spiegelung an der Geraden  s bleibt gleich -Pipi Langsocke 13:11, 19. Okt. 2011 (CEST)

Aufgabe 1.4

Beweisen Sie Satz 1.2

Es seien \beta_1 und \beta_2 zwei Bewegungen.

zu zeigen:

\beta_2 \circ  \beta_1 ist eine Bewegung.