Strahlensätze (2011/12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Satz II.04: Inkommensurabilität von Quadratseite und Quadratdiagonale)
(Satz II.03: Inkommensurabilität von Quadratseite und Quadratdiagonale)
 
(7 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
==Strahlensätze==
 +
 +
===Satz II.04: 1. Strahlensatz (STS I)===
 +
Seien a und b zwei Strahlen aus einem Büschel mit dem gemeinsamen Punkt A. Ferner seien g und h zwei parallele Gerade, die mit a und b jeweils genau einen gemeinsamen Punkt haben.<br />
 +
Das Verhältnis zweier Strahlenabschnitte des Strahls a ist identisch dem Verhältnis der zwei gleichliegenden Strahlenabschnitte des Strahls b. Gleichliegende Strahlenabschnitte sind dabei Abschnitte von verschiedenen Strahlen, die jeweils zwischen dem Scheitelpunkt A und derselben Parallele oder zwischen den gleichen Parallelen liegen.<br /> --[[Benutzer:HecklF|Flo60]] 13:03, 18. Jan. 2012 (CET)
 +
 +
===Beweis : <math>\frac{|AB|}{|BC|}=\frac{|AB'|}{|BC'|}</math>===
 +
Bei allen Beweisen wird hier das Problem der Kommensurabilität auftauchen. Dieses lagern wir jedoch aus!<br /><br />
 +
<ggb_applet width="1366" height="607"  version="4.0" ggbBase64="UEsDBBQACAAIACpoMkAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAqaDJAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1cW2/cRpZ+zvyK2l4jmAEsqu4XjZTAUuxEgOMEsNczWAgw2M1SNyM22SHZunhn3md+wj7NS35DnvZN/2R+yZ6qIvsupVu3aY1huUhWsS7nnO87p05R3v/6cpihc1tWaZEfdEiEO8jmvSJJ8/5BZ1yf7ujO11/9br9vi77tljE6LcphXB90uGuZJgcdyxXlnIkdaona4QZ3d7pS8h1BdCysFarLTQehyyrdy4t38dBWo7hn3/cGdhi/LXpx7Qce1PVob3f34uIiaoeKirK/2+93o8sq6SCYZl4ddJqLPehu7qUL5ptTjMnun79/G7rfSfOqjvOe7SC3hHH61e++2L9I86S4QBdpUg9gwUzTDhrYtD+ARSnOO2jXtRqBREa2V6fntoJ3Z279ouvhqOObxbmr/yJcoWyyng5K0vM0seVBB0dEcaa54YZxraTRII+iTG1eN41JM+hu293+eWovQr/uyg8JM6uLIuvGrkv0l78giilGL11BQkGhkDJU4fAMs1DQUPBQiNCGh9d5aMpDGx7acNZB52mVdjN70DmNswpkmOanJehvcl/VV5n182keTJdPXsKaqvQzNGYYDCUIHZ5j/NL9SPjhrmJ3fpFkZtS6HG84aDskYVKuPya910pZOyjlZHlMKm5Yp7xl0LDwtRYqZmQLQ/m//mdpRHbbMhdHDPf3G1DyJ1ni/m6Llf0GHqgauLaN+dR2WDnAMIOEcXZPkABwSAVmLhAxUCiKAA6ICMQF3BKNpCsVYgoqOGJII9eOMOTRITT8w5XvTCIBnbmnCkCJCAzEkWCIeFBxBFBCHpgAUsqghRBIwEtueEJdF0wiLuGOacRhjg6TikBDBi/CPQxPESOIuZeJQlQi6foj3GFdajd16JIiiZEkrkOANUA6wBnaa8TcamQjrjQfjes5EfWGSXtZF6OJLqA1ENKU9wJBzdHiF/tZ3LUZuIr3TpMInceZQ4Qf6LTIa9QqkYZn/TIeDdJe9d7WNbxVoZ/i8/htXNvLN9C6asf2bXtFXv1YFvVRkY2HeYVQr8jwZM5FRmau6WTWcMNmKvhshZipkDPXauW4BdSgcWVh/KKs2uZxkhy7FlNqAEn+kGdXh6WNz0ZFOr+M/V3vdfbtuJelSRrnH8FY3ShOLmjqhBxftU5IKNPOpCiT91cVmDC6/G9bFiBbExkNLotTBa5ECyI66KqpIjJSBEhdKS6JkRjwV/Vihz6hIs4F9KukxESAs4a3bq7zg9vziZLiSztdb7904J65Oa4Oi2z6yIvgKB7V49KHEMCPpVvXq7yfWW8mnnHBP/fOusXl+4awQ18frkZwh8MMun0vegT0QAXMuN+U3VD6Nm5qk1bYt8G+BW4NLk0m9cRQ38KX3VD6VmDBYWrNUkm7TILbYdLKkxruNNBpCcvZv/P24zyt37Y3ddo7a5ZKwgvvxsOunVjRfJ/kofrc310ws/0zW+Y2a6walDkuxlUA6YzBJ7aXDuE2VDQiiZ26/gsmEJ4mtl/aduKZD8+CwHwtnrXXpce+qzdlMTzOzz+ALSxMYH+3neV+1SvTkbM51AVPcGanVpWkVQyOJJl9z8EQlt5zDgPEUzvRHNoLC2J9/+E9Ot5Drw73Do/QAZRfxqOi+iPaQ83VUSgAz+N6UIBtvMkKCcpNgItA2g6xmR1ChIZqb5LeqieqeeVjP6cDVHR/AjqceMxQP1UyVK80T2/IcTYaxC4+bASVxVe2nBOd7+/7IlkUKOjLrxqoYeQDTLCIkbXBmMKM4WIEHXoMzrEb6KhCly7UF0A6VwedHRxBQPo5BP8h+HWrdcicI/TwdEG9YHNBUL8hso/LIps392chMxPhicyYfhCh9YrhMM4TlPu46C0wUWfqpmPsjA3FxAkwCGdctxVx6KrpYEn+jtQm0o1/w2JnVnuT+PHdhT8VIMhNUC9BFQkvPyglIWb6Ryxycg0RwxnsiyrvOOrGRfiL79IksT5aDD7r5zy8UgWiTIejLO2l9SaGerhd2L6LlYpIwb4DMyUkhAK4MVkwVNiKUS0EodJII/iT2u/hkv12N7Df7rbYL4nMvBSZFy6PiJwVufKyhYBMwJ5fGUqwoISRxzfteXX86E17Xh/dJUUc3a6IeXwc3QkfhIYAzpfbgBGIegUB3qEKE8UEbzGiqdFGMoK1lvDnYTj+Nnl+v118cze/yCMJglOcMcGUYtQ00lREww1mUimqpWP+p2Ccw8A43y8Zem8DxultC+NgkK0GzuHAORg2eUaHCATEyCmmhgOxSO0k7KUrIkyY5tRQLOAVyp+ac1Yo5CgopLekkGQDhSTPVCEK/K7ghGtwAeAhtHpqhRznNWwTQWALWukFrcRLWmn2SJt4hfaVu3CZSxT2Q9ENxf2VxEXENdWEK8mNBF0EFdFIGEWUYYQygAlzWW6PGYU5UL7hoB9AjXxAfrpJ+slN0j/aXPpHWyZ9CRDhEAYxbQyARPEWIIILI4lhlGrKpFCPLv0fi+yqX+SrQ9JpEoCuik8/ptBr74yExt1PJDSM/QUD/KynqDCByT647fSuHLAWAfaKPEmDV3fpyaZ1iv7593+g1WYgiDcDVyyFFGQTO7g57qls391NY/pPZH1Kf9gV3Yv8qTaKGU0xgb/Em7aJMNAKhycCoknKAvObiHChpAAnLAyXXD8O83ujzVx0NuEakNNynu/M2pFLsP6QfyjjvHIHuaHNTP5wTdXFz1F1JALOh6BISENBLZqLQEs8MlgqJsFpc6oolSFKBV+BqaRYcwM6pHQpV/xstddby11snwZv2HvvrN587zzR7vtRFLiJF2v819QbrfJitPFisy4v/kQbT/aJ3MmL0S31Yu0xkbt9dC/2ZGBauaq70yGN1HyuI8TIItJmNjEiROPLhMQS7rQmzLDlk7MtBtNv+TL67JRHI2BBoDShXeocdjledS63Dp6NuVhDMXBnQXU7RLlDY4hDQNFEQOD97xOI9J4kEHlY5eGIw+ZIQ6hhpFaCGNkEIjLihEnYHREpuQS1tn6MSwluD/wdNVyJR8roPI72LkclTMzJvNHHB3tZgxih4qDz5c/jov7j6wr106xGn8fos037Nt9DL06Kc1u6Ff7Pq8O/ohO0h6ZPDo/ckwP4mW0VaHip7dxx71/DgH6S83ZVw6w681O8U7bpAeOetHobf7B/npdt81lNZcv0dPIVVfiEQnZarbY+to7L2p8AoMAZEMwKrQxEtAziXc4avseSSqIVgQiKY4nFbJL25pjkh7IeFBATxNmqDOwkzJiJORYjE7tB8s/+1vHxk2X/GIskBuKV2CitALANeImIhCKSCgdTwUw4UqcSR1pwKaSLXOXW5P66t6vmm02yT99sTd7pXfzOK8OXn0P5+Jk828hySYqvN5Hi67WluNqNZbe4sceQNQQe7nzHuSbYiunmyIcqGTEC4IBdNhamPT9TMBChiguIKalwn6Y9nFreNyHBLQz0ekk1p7erZjHMOH1E5bTftjU+Y4MY44fT08rWIbcRzi/lSt2xFbE/1qAeDRQGjA9bgMmHQBIYjXLtPiAAjmvUJyMiiMtwaSGdm5C30JiYHBqKf10IAouNR14L/vGLwaeZkKCNCdooYvCJvriPr5vmhxetrL+Bh+tvjYdbkcy8Wp35dMl7GgnYW2DANpiRfvLTxptIud98NdWm2xdV8ybUf7sJRb95ZhQNW3mmIRbBjBiugXonisSMKQ4a44JI3ByCPeZHDt9uTYiw5rdRj/Glwg2OKhjimyULHWzmogZb7qJooBG2posikWSwHQGtKEUJdZ8FhhQHcf7JUCXcrz8RTIOmgLS4VFprxikTjLHbviJ8Pi5quqkNjoosOap5o+gWRWbjaZ429UYBA4zt0gzv88nR+o5magCEhRCRU3MrVGel8l2anVp0vF5Wgc5lFV6gV+PTfjkG+J2gBKZ2nJ8V8H41LuNumqX19S811JxDHyfo7fUved+6q7RyT23qrqGD2qaZf/7iy/8kGDqdax93q94gT+vaN8nT3sC9nA6HMNwJGl7/2ge7GUST15s+PoKa474t3UsXqWuapLayFVz8WBZdWKZ7FJ9e/5+ry+PeAIp4fP2PuZn8Pokn7+fjPPQyt5Z6YIvS1mnlO2inNwTJ+eqz61/z3OZ/iKDLtfMij5orfaBYZsPMCZ4kTvDKxAnhkcubamPcxz0ca9V88im1VoZASMwk+BN6U97kdoj+tE0QNS1E9aYQXROjbAGjf/LmG9J+7mKcX//SG1T1S4+AqppYNSCyb6Ed4M0GuH1T2hRCO1d5VuSAdCfjE9BpnkQTkCxnCH06MaC8LtPzNM5s6X5nZLGfz2PfmYdOZbNuVUfzKH419nVhetPJ3EbiJyjQ0XJ+0s/KTX12Fv8BN3+Ky/Hwa7h4A5VeEE4mA1vGY3dRJJ5qghJOQA3H0Qu0PprZfdH80/NDM4mEMlowQiAAphAch8RFxDXshSEslka5365jd4Pz2RbBmUp+ZziviWe+iGfwl2CHXZsm87BocPKtc8iVTWs7D4OZ9H08PvV4nPV1jRf3XUDPufdp7ua761996ZA4gGnlLyftEu9GX3Xd/wDQxgDgYOMyzjIbnDp0VI1K5xc38oH8vqg5e36oYRGHjaRzfpIzQ8zk16CEpoxiwSQlRAph7gabbItgwxi+K2w+brbq4RatWjSuX6y/6LfXv1bjvL8eU4gFpnjt3Jc799sDh9VEtMd/2EP4pQg5OfTPv/3vylM/aHGC3GZoscWCv50Eyse39RvOF2/rd3q22Pb4LoTkoWOYtXPace4YpW/PIGr/7AKIC1smnmUa8goNILpPu/WEpA7tIHZb/rwfrc8/4r78M3x+/BMpLCkwj9FSSCXaX8OkkaCGSEMp4Yool5q+gX92Z39d2P9ifvPfzHz1/1BLBwjQ7JCeWA4AAANHAABQSwECFAAUAAgACAAqaDJARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIACpoMkDQ7JCeWA4AAANHAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA8A4AAAAA" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
<br />--[[Benutzer:HecklF|Flo60]] 13:03, 18. Jan. 2012 (CET)
 +
 +
===Beweis: AC : AB = AC' : AB'===
 +
<ggb_applet width="1350" height="591"  version="4.0" ggbBase64="UEsDBBQACAAIAFxoMkAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABcaDJAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1c2W7cRhZ9Tr6i0mMEM4BFsXZSkRJIip0IkBdAHicIBBhsstRNi022uWhz/D7zCfOUl3yDn+ZNf5IvmVtVJHuV0q1tWpHdKrL2utu595Ktze/OBgk6UXkRZ+lWBztuB6k0zKI47W11qvJozet89+2Xmz2V9VQ3D9BRlg+CcqvDdM842uooJgljlK8RheUa893uWlcItsaxF3CluOwyv4PQWRFvpNnLYKCKYRCqg7CvBsF+FgalWbhflsON9fXT01OnWcrJ8t56r9d1zoqog2CbabHVqS82YLqJQafUdCeui9d/frFvp1+L06IM0lB1kD5CFX/75Rebp3EaZafoNI7KPhyYCtFBfRX3+nAoSbwOWte9hkCRoQrL+EQVMHbs1hy6HAw7pluQ6vYv7BVK2vN0UBSfxJHKtzqugyUXPmcCw/a4x/WKWR6rtKw743rR9Wa6zZNYndp59ZVZknVQmWVJN9BTol9/RcQlLnqqC2wLAoUQtsm1dS61BbEFswW3fZgdzmxXZvsw24fRDjqJi7ibqK3OUZAUQMM4PcqBf+19UZ4nyuynrhgdHz+FMxXxBXSmLgiKJTrUu+5T/RHwYbphffKQeGzVMq+WXLRZElO+xJrkVielzaKE4dk1Cb/inOKaRe3BFzro+DlhKfPffGZWpNcdc3pFe3+7BQV7kCNurje6slmrByr6um8tPqUaFFphqI+4r+UeIw7KISSIOUfYh0ISBOqAMEeMwy32kNClRFRCA0MUeUj3wxQZ7eAe/GLSTCYQh8l0rQSlRBgWYohThI1SMQSqhIxigpISCj04RxwG6eUx0VNQgZiAO+ohBnvUOikxdKQwEO5heYIoRlQPxhIRgYSeDzOt68LTW4cpCRIuElhPCGoNKm3VGfp7iOrTiJpccTqsygkShYOouSyzYcsL6A0GaWT3rIGaMItfbCZBVyUAFQeakwidBInWCLPQUZaWqGEisXW9PBj247A4UGUJowr0PjgJ9oNSnT2H3kWztukbZmnxOs/K3SypBmmBUJglbrvnLMFj16TdNdzQsQY23sDHGsTYtZy7bgYtqCoUrJ/lRdM9iKI93WNkGoCSr9LkfCdXwfEwiyePsbluUGdTVWESR3GQvgVh1atouqARCGkhb0CIC9rsJMujg/MCRBid/aLyDGjrO75HPcKIZJ70OOYddF43YeFIDEZdSkAaXxAJmwsDrX1cOoxxLn0phIs5gDWMuqKN27XVScuj4EyNjtvLtW6P3ewVO1kyqjIU2A2GZZUbDwLMY66PtZ32EmWkxBhcgOfwuJudHdT22s715nwId67dQbdnKI/AOhAOG+7VZdeWpo/eWtvLNX1c08Nt5C2O2nbsE9PDlF1bml4gwHZr9VFxc0zsNsvEhbFpbqfWnMZeafHXYF+lcbnf3JRxeFwfFdsBL6tBV7VCNDknvqs5N9enpGzzWOWpSmqhBmZWWVVYHR2T90iF8QBubUNNkkCz65+wAVsbqV6umo0nxjuzBDOt7ri4zlSbqZ7n2WAvPXkDsjC1gc31ZpebRZjHQy1zqAtAcKxGUhXFRQA4Eo2P01oIRw81XgB5Sk2aHXWqgKwHbw7Q3gba2UUbaHsXbaGdr4NhVnyzawuo2K4vQaGrsp+BdDxPMgHsjcAYAb21yiZqAC4aKo1QGrlumbNtnD/NBZR134M9bCHTto/YDM1zBdSIcpAM+4F2EGtSJcG5yieIZ+Z7kUXTJAWOmXODbRgaDxNkYqiUFSe7Y7gYwoRGCyfMG3CpQGfa1+cACudbnTXXAQ/9wnr/1vvVp9W6OWHRbe0Ug0HqLKH+hGRvZ0k2KfCPgma+47Y0o96dEC3MBoMgjVBqHKN9sEWdEU4HrhY2FGBNQEucqmwaAjtVPcEM/bVZa6kb/InEjp32KvK7Nyf+iIBAN04MBaXDDf2gFBj7ox8+bZVLcBmOITAqDHSUNUiYix/jKFLGXbSo9SG1QwprKuPBMInDuFxGUHdWS7dvIqXckRB4uBTCTvAF3FpkQVAhFiMe55gIXwekDyq/OzPy211CfrurIr/Y8SepSA1xmYPFOMmloS14ZNynTPoEu5xgiu9ftCfZ8dqI9iQ/ujOM2L2eEZP6sXsj/cDEunCmXAUdAbeXY7A7RLpYUs4aHfGI7/mCYtfzBPzcjY2/jp4vVsve3AwXqSOokJgTTn2I2H1sqEkgtMBCMB8CHOxxwuTDWJwda3FezAh6uITFCVfH4jCMgbxUEMI8kE9rcdaIAzJKPI+DNaJAcm7xFLsOoUQQl3CPUOm7D2505nBk13IknOFItARHosfKEeZQCgE5sMWDsBwC8wdmyF5aQqQIBJviSmi5EsxwpY6XloGFZshNjJlOFfZs0bXF7ZnkE4dTJjAYc0Y9XzvrmkXcoRxMPrBC+hqR68AHO0JS7BFJPUqBoeIODdRV1I+uov7u8tTfXTHqY0JB5iWmjPkEVEHPqslPHYKlK8ALgCZfCMnvn/6vs+S8l6XzvdJRHoDMc1HfxjBreIxt5+47bDsG5oKCBi3GKruBNhRuJr2pFVjIBIZZGsUW2HWKsu4doz/+/RuaLwgcG0HQxYxXgZeRhKtdn0L19N3IrX+H/ywvcG9Huk0MKwhjLvewlGDVJbbGxXfM4z2KmUuIMLnZC1MrIQZwAYgBGGST3L1r62/ENtEuWmtvgFCz6b5jpYY6z/oqfZMHaaEf59o+Y2nEBZkXzGPew4jjbbCbuhywWFJw+iUltM7nMMdjrscAKCjzXHBhrWECF1YA6zyI3Tzwqhj7y3AvXAgyVo+DVwTga/Mj8LUHCsHvhYHL4FiNYCM8modjpMaxcdAL3pEay97hG+EYWVEca54W6dt7x7EHU6a5p7q5OSSOnEx4SKNN3PH88ewIb7CMC1fAnQcG0aezD9BWWJn+DMvIo2MecSDWZIwS7gMTwRJywzvXYWDyfP0qD/dd+GBrCbF0fIhXpS+5FNIDb/svw73wQTyRu+Weq5NjjIM3gjEXvsQ2ZwaApTNpGJCKScHAo2xwjGHfFcJnEE4R5j0m3p0Nc9iYpnjNjTfqrITjQsNW5+sPVVZ+86xAvTgp0UWFLlTcU+kGenKYnahcn/Djzu4ndIg20Khm29RswWes18RT3tkRdb1d0GxyUqpK2FVncos3SjjdodsTF/vBG/XzJG3rd2sKlcdH7atU9kUK0Wm42kBsGeSleQqArMkQBGIUCR4tAzGjjNbm3hVEYE9icKCYK2qhqxO1V7skr/Kyn4FLECTzsrCtlzHmckw7JmqJ/J9aIlS83wSg8BwpPFBSKSFowE3+j2IHMJRLHUaAORbUPmEDHXc40S/XgFvqE39l8n/d63nz/TIZqO9XJvf0Mnhp2GHKC1vefzZP1bScoeKzZaj4bGEqzkex5BoUuw9aE0bAdmAuiQeGQ3K3dh+577g+oBs4IZ7vcfsUDTpoD0Snx10J9T67Q74c1C7BNTbo2Qxvjq7nzbSbcXSP3GnecatRYwkf49XRUaFKm9ywr1ZgPJd7dMaOEbD7XL9ISLHAHDCgfR+IS0xdDEhAsbZzFg44hN6MCeJJV9LrcyG8fXTI/39OCJw1GBoumOon/XdjzkLjLTR+RP8deXIbtBuliKelrLcExvVWBuPmZDPPr8h9aoyDYMTFwvc8MAQQkYhVwbhe/fZUk3OfZs5z2/7DMlb6+SOz0hDNU4+AG0KxzzyI6FtWAq8khIkQ0mMB8eK9v+zww8p4CQu+I3UPLyxcgVRWDp/PCGh/OYzqrzhGEesrUzKXTTMQhR1BISIBpoC5wcT3vTrHAQEyYT6RXH8NCoOJsmGy7zAhwQhRRiinIN1/CYwaRbQWqfAMUk0KRTfLEhWMMrWxEQpYoFIzO7zNm0eLI81IAMwzd/3GHPGv1dRxqvwYJ0cK7S2WWCATiYUnaLs66uUVqN8himBre+lxBuOLKg+6cRKXl7+X0HICcxyi/cvf057SV3Gha1Wsr2GCUsWJqX/y9d+wC5NO9A+6RdhP47I0XdI47OvB8WAAyx2iweXnHshN32mH13O8BTYHPZXrQaex7hrFqlAFXLzOsy4cU1cFR5f/1W1pEPahCKrL3yZ28vcoaMenVWpnmThL2VdZrsq4MBM02xsA5Uzz8eXnNFXpPxyYcuHUyL1mS+/ImVkyeeK2uRN3bu4EM8fzMIe4xSU+uECerN/8FJ4nfcwFpgLghFyVOrleRd+vkor6jYp6y6rogjpKp3T0JyO+NvOnL6r08vewX5RPjQYURSvVoJE9Bf1A35RVt+9zFYNnpxuPsxQ0XdP4EHiaRk6rJGNpwNqm7nxqtbzM45M4SFSuvzwyPc9FZSYzqlOopFuUzqQWb1emzW5vtJnrjPghsuZoNnVpdqW3Pr6Lr+DmpyCvBt/BxXNoNITQNOmrPKj0RRYZU2OZcAhs2HOeoMW1md5Wm98/Pm3GDpe+jm8w+L8EfOPmlVWIYECPmfCl/pYdvZk6H6+QOpP67aubqPOC+sym9RnwEuSwq+JoUi1qPflBA3Kh4lJNqsHOSEmC6sjo4zjW1ShupoCZU4Np+ubHy8+m1JrYh22lT9t+kYHR7a7+SwCNDwAAG+RBkigL6jBRMcw1Li6Fgey2WnP8+LSGOvqRlQY/waiP/fbbUPplY+JyKgjGgnP/ZmqTrJDaUOreVG3eLnfqwQqdmtfQzxc/9P7l56JKe4tZCj4X+bsKlDU1ylilGtDeq/Ki9sCN/gZ5XPYH1ok13fars6rQWg6ewkC712OuQu0xX4D9MHMnseqCZ6GNRp6bLzsA2sPdL0HfGoBhC8kf4KMfRD5t5jo8yoPw4/DTxw/tA8dRzZQr8KyoR2+03ZD7lE+auN1P6I9//UenGz+hj9Ot2+OtdrkrJ5pyK+wwPG/SuT2J9UT0v4Own1Q6GogS6+gcAwEvypHjo02lPtup6rWUMhUQpMTdsrW1O6ofVMMShOGrxc0ov60ZHTw+M+oIzlziCu4zLFzqtV8gYFL4oHse0W9Ne753lRldH//6s/k7A/Vfzfn2f1BLBwjIMI+0uA4AANJHAABQSwECFAAUAAgACABcaDJARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFxoMkDIMI+0uA4AANJHAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAUA8AAAAA" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
<br /> --[[Benutzer:HecklF|Flo60]] 13:03, 18. Jan. 2012 (CET)
 +
 +
===Satz II.05: 2. Strahlensatz (STS 2)===
 +
 +
===Satz II.06: 3. Strahlensatz (STS 3)===
 +
 
==Kommensurabilität==
 
==Kommensurabilität==
 
===Definition II.06===
 
===Definition II.06===
 
::Zwei Strecken <math>a</math> und <math>b</math> heißen genau dann kommensurabel, wenn es eine Strecke <math>m</math> und ganze Zahlen <math>p</math> und <math>q</math> derart gibt, dass <math>p|m|=|a|</math> und <math>q|m|=|b|</math> gilt.
 
::Zwei Strecken <math>a</math> und <math>b</math> heißen genau dann kommensurabel, wenn es eine Strecke <math>m</math> und ganze Zahlen <math>p</math> und <math>q</math> derart gibt, dass <math>p|m|=|a|</math> und <math>q|m|=|b|</math> gilt.
===Satz II.03: Inkommensurabilität von Quadratseite und Quadratdiagonale===
+
===Satz II.07: Inkommensurabilität von Quadratseite und Quadratdiagonale===
 
:: Die Seite <math>a</math> und die Diagonale <math>d</math> ein und desselben Quadrates sind nicht kommensurabel zueinander.
 
:: Die Seite <math>a</math> und die Diagonale <math>d</math> ein und desselben Quadrates sind nicht kommensurabel zueinander.
  
 
===Beweis der Inkommensurabilität von Quadratseite und -diagonale===
 
===Beweis der Inkommensurabilität von Quadratseite und -diagonale===
 
<ggb_applet width="364" height="447"  version="4.0" ggbBase64="UEsDBBQACAAIALmNMEAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIALmNMEAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VtZb9vGFn5Of8VA6GMkzcolkFM4bpw4SJsCzr24uC8FRY4kxhSpkpQtBf3xPTNDUuJiW1LiWDYaJBmSczjL+c42n6TRL6t5hK5lmoVJfNIjA9xDMvaTIIynJ71lPuk7vV9e/zSaymQqx6mHJkk69/KTHleSYXDSG3PqM+z7fcvCTp9Tm/THAZ70Xekyb8wcPGEgiVZZ+CpOfvfmMlt4vrz0Z3LufUx8L9cTz/J88Wo4vLm5GZRTDZJ0OpxOx4NVFvQQLDPOTnrFxSsYrvbSDdPiFGMy/N9vH83w/TDOci/2ZQ+pLSzD1z+9GN2EcZDcoJswyGcnPVhfD81kOJ3BniwMN0MltACFLKSfh9cyg1e3bvWe8/mip8W8WPW/MFcoqrbTQ0F4HQYyPenhAbUYEbbjcptZDqekh5I0lHFeyJJizmE52ug6lDdmWHWlZ+Q9lCdJNPbUiOjvvxHFFKOXqiGmodBYlunC5hlmpqGm4aYRRoab17kR5UaGGxnOeug6zMJxJE96Ey/KQINhPEkBveo+y9eR1OspHmx2T17CnrLwKwgzpVKjcniO8Uv1D/T8kpe63tok2Zo1T5d7TlpNafHdp6TftFFWzkm6tknFLdu07pjU7HuXfRKxNSdMpf/qf60Z2V3bbM5o7r9tQgXBD9jiaFi6yqjwDpTNlGxhPbmcZ8pfmIuEq8yeIAG+Ydlg5QIRFxqbIvAGRATiAm6JgyzV2ojZ0MERQw5ScoQh7RzCgf+4rQezkIDB1FMbfBIRmIgjwRDRPsUReBLSfgk+ShlICIEEvKSmJ1QNwSzELbhjDuKwRuWSNgFBBi/CPUxPESOIqZeJjaiFLDUe4crVLUctHYakyMLIImpA8GrwaOPNIO8gpnZjFeoK48Uyr6nInwflZZ4sKixAGuLRJuqZ+FQLii9GkTeWEeSJS4UkQtdepDxCTzRJ4hwVIFJsnk1TbzEL/exS5jm8laEv3rX30cvl6hyks3JuLesncfZHmuRnSbScxxlCfhLhas1JRLauabVquGFbHXy7Q2x1WFvXdue8CfSgZSZh/iTNSnEvCC6UxCY0gCY/xdH6TSq9q0US1rcxGuqUM5JLPwqD0Iv/C8aqZlF6QVUGUr5SZiBO3HIhSRpcrjOwYLT6v0wT6BMDvP0HvGRteghh9S4YMfM95XsC13sgEKxv6SLcTC2vK4S8ldxsdpqGla2o64vsTRIFVbfe/pm3yJeprh0gNqZqU6fxNJLaRHS0hcTsX42T1aVxcGbG+rxewF1hKOOpVjuC0ECFAIGiHZtWy6iVVVJYy2AtURlbGFT9xKVaQrdj02opsF6ztGKnpNwlweU0YaYDGu4VblMGK2X7Ks8v4zD/WN7koX9VbJWYF35fzseysqD6mOR7jTkaNkxsdCXTWEaFRQOWy2SZGQfdMvZA+uEcbk1HoRJPwfUfWIB5GshpKsuFR7ouMwrTvXjbWFuP9VDnaTK/iK8/gy00FjAalqscZX4aLpTJoTFkgSu5saogzDxIIsH2e8oFYeu+ShagnlypBpxzmc+SVJdeEFOgVZ4XyTkUWijX5qUttFLzqa7glD5RMv4CYa3KfKZ/S1HQ32lr2iq9aDHzVJlX7Dry1jKt6UEP+FsSNLUDytdbACdfqAEUvAspjWWYJcPFAgbUDlULU6DwDK3MtGh90uvrevyrqeBNCat2q7ysFpjN0wZUYD9GUfeo7M2RqewQhYnvrTA/mc+9OECxrm3+SKL1NIl7m2zrYWVryCNKf8ijqpY3KlrmZT94bQRhkRgxz4iNoYF05kMDmQyOQB7ksDNoIH39alZRzN0Bm1lFCUw1fj3o5ZCOr+DMkenInBcxWF+8D4NA6lJseBDmRDCNuiBFVN6ATvYB/XbTzORU3VUL8Q4zzjsWuqd1tp1SFCZGN2MdoHv5V2xeyUwWCOeLKPTDvLKiSJn7RZxDTpA6KLZD/ZWUC5VjP8WfUy/O1CHeyGylkB31PL5Hz5tEt63mMpHjPbX8aTLJZK6U2idGqXB66gKBNUEAB3drfxz9Oi4xaXazOxCyjwAh2BsUVyr46cc/e3/in/dDzj8eD+mTAWOUWrZFXQFHMsd23vaJKCNzHRlXA9Z++lw8KjgeXKrs6Awch9gOnEdsOBlQQQEeS+PQZwMhqE2YZTsOxgCeRu6pglGvcM4Og0Id4aamGZvm4BJnuQqj0EvXLedvYYSb8c1+8ALw1yegnlssd12Q29+94rssvLmz4jtrlXry7sqtGRvkQdlWhYSDSu6tdMtcEwlEJx67ptsdS6BjTLBBR4KtQ38Wpn4kG8iflbV+E/nJ3cjDqTb0N57Uxr3OEuxw1vqGjHBQIA+nMr6GpSZphtAKFw63xmXRVT5ZgXr6pkYmpVeSLbeEM14artBpKX9aSp1SfVEjrcC2T1kxwylX9qqvhJ6iFSA7rUmRmuEElH8n2JV1NfCeGLxlC++3puO+k9p2fH372PF1489kwC3OLQu7HFs2tZiJBnQgmBCMuVi4jNrMdh4gpBq/Ok39btd6a87HbQ+b7uBhCy/d6Hv67YTGgzmZsuzn5GUPXtftQsQUPnl6DxFDC5/+kxhBT1+AAmaGjAkNGXNuyJh3B5Ex9DmTMUpzR3OoaYYySk0s6whxX7VpO8J2LM7gcGpBnGt9VvBkzjYtiuxQVA5lb/YHpfmYmPzSwITbR15L7o7J7LHoNEO2kF3L+xYwvBMvWhxCIbJwmzgWFTaIUvfYAWuza2RPdi08GtdqBzbSHfBKRocMhOUITrnLXcrsKoUfLVq78hXnj11P78BXdEU8fe5uetaDszvvnoC26MClDpw8iOMQxgXlFWeM6xXrD2N63t123v+yH9Pz5Xjix+0UGh1gm4A5OgRiu+C2mvyr4tyoo775SbnNLeJi6wnFj10wPi8Pnk2Mr/bD+Orx2DwTVUinBbSz/S1uRgaEYEoZphwyOxGWMJ/a6I9nai/cWTUfgwm02b52wt+B7SsOlO9alrHYh+1b/Mv2dfMQvBFYeJOH6DjDKVaig6Z6AOpvYcC/aoH/fn/q7/1jJ9/7z8t8YGF4SmxiQ41ICfuB1F/hZ+8NH9N2t7/2pf7++pf6283l6Hd2uaPgAc9r5nQrD8iM2KTkAWclDxgZHnBueMALwwN+OIgHZM+ZB5wcEw8ILlFnkcwnnHzAOXZcil1HYAw91VcdyIAKODwzCqdiwYnDn893TmbHBEz1JdYOgMw3TlxBHOYK7DLhOC5/NjBER3Po6/YNOAhQ9aswCx5QgcEXNt8DwgNBMXPUD8uoA++0v1R/ZCX/7rDMH4uU5VbB1O1Iy5ae00TPcYpDmeXYto1t1+YMQ+eRI9RmYek9LGy9iL547CJ6BwYLN6to9pDV9V3a+vAUtfWQ5OguVNCHsnJslozxflRQ/GhUEN3ze9TdmaH1lBYf1FHsEEEdBRnD5SHgyUScoCPiDLd/cKR/1lf8Qv31P1BLBwjCLbuHJwoAAD4/AABQSwECFAAUAAgACAC5jTBA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIALmNMEDCLbuHJwoAAD4/AAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAvgoAAAAA" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="364" height="447"  version="4.0" ggbBase64="UEsDBBQACAAIALmNMEAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIALmNMEAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VtZb9vGFn5Of8VA6GMkzcolkFM4bpw4SJsCzr24uC8FRY4kxhSpkpQtBf3xPTNDUuJiW1LiWDYaJBmSczjL+c42n6TRL6t5hK5lmoVJfNIjA9xDMvaTIIynJ71lPuk7vV9e/zSaymQqx6mHJkk69/KTHleSYXDSG3PqM+z7fcvCTp9Tm/THAZ70Xekyb8wcPGEgiVZZ+CpOfvfmMlt4vrz0Z3LufUx8L9cTz/J88Wo4vLm5GZRTDZJ0OpxOx4NVFvQQLDPOTnrFxSsYrvbSDdPiFGMy/N9vH83w/TDOci/2ZQ+pLSzD1z+9GN2EcZDcoJswyGcnPVhfD81kOJ3BniwMN0MltACFLKSfh9cyg1e3bvWe8/mip8W8WPW/MFcoqrbTQ0F4HQYyPenhAbUYEbbjcptZDqekh5I0lHFeyJJizmE52ug6lDdmWHWlZ+Q9lCdJNPbUiOjvvxHFFKOXqiGmodBYlunC5hlmpqGm4aYRRoab17kR5UaGGxnOeug6zMJxJE96Ey/KQINhPEkBveo+y9eR1OspHmx2T17CnrLwKwgzpVKjcniO8Uv1D/T8kpe63tok2Zo1T5d7TlpNafHdp6TftFFWzkm6tknFLdu07pjU7HuXfRKxNSdMpf/qf60Z2V3bbM5o7r9tQgXBD9jiaFi6yqjwDpTNlGxhPbmcZ8pfmIuEq8yeIAG+Ydlg5QIRFxqbIvAGRATiAm6JgyzV2ojZ0MERQw5ScoQh7RzCgf+4rQezkIDB1FMbfBIRmIgjwRDRPsUReBLSfgk+ShlICIEEvKSmJ1QNwSzELbhjDuKwRuWSNgFBBi/CPUxPESOIqZeJjaiFLDUe4crVLUctHYakyMLIImpA8GrwaOPNIO8gpnZjFeoK48Uyr6nInwflZZ4sKixAGuLRJuqZ+FQLii9GkTeWEeSJS4UkQtdepDxCTzRJ4hwVIFJsnk1TbzEL/exS5jm8laEv3rX30cvl6hyks3JuLesncfZHmuRnSbScxxlCfhLhas1JRLauabVquGFbHXy7Q2x1WFvXdue8CfSgZSZh/iTNSnEvCC6UxCY0gCY/xdH6TSq9q0US1rcxGuqUM5JLPwqD0Iv/C8aqZlF6QVUGUr5SZiBO3HIhSRpcrjOwYLT6v0wT6BMDvP0HvGRteghh9S4YMfM95XsC13sgEKxv6SLcTC2vK4S8ldxsdpqGla2o64vsTRIFVbfe/pm3yJeprh0gNqZqU6fxNJLaRHS0hcTsX42T1aVxcGbG+rxewF1hKOOpVjuC0ECFAIGiHZtWy6iVVVJYy2AtURlbGFT9xKVaQrdj02opsF6ztGKnpNwlweU0YaYDGu4VblMGK2X7Ks8v4zD/WN7koX9VbJWYF35fzseysqD6mOR7jTkaNkxsdCXTWEaFRQOWy2SZGQfdMvZA+uEcbk1HoRJPwfUfWIB5GshpKsuFR7ouMwrTvXjbWFuP9VDnaTK/iK8/gy00FjAalqscZX4aLpTJoTFkgSu5saogzDxIIsH2e8oFYeu+ShagnlypBpxzmc+SVJdeEFOgVZ4XyTkUWijX5qUttFLzqa7glD5RMv4CYa3KfKZ/S1HQ32lr2iq9aDHzVJlX7Dry1jKt6UEP+FsSNLUDytdbACdfqAEUvAspjWWYJcPFAgbUDlULU6DwDK3MtGh90uvrevyrqeBNCat2q7ysFpjN0wZUYD9GUfeo7M2RqewQhYnvrTA/mc+9OECxrm3+SKL1NIl7m2zrYWVryCNKf8ijqpY3KlrmZT94bQRhkRgxz4iNoYF05kMDmQyOQB7ksDNoIH39alZRzN0Bm1lFCUw1fj3o5ZCOr+DMkenInBcxWF+8D4NA6lJseBDmRDCNuiBFVN6ATvYB/XbTzORU3VUL8Q4zzjsWuqd1tp1SFCZGN2MdoHv5V2xeyUwWCOeLKPTDvLKiSJn7RZxDTpA6KLZD/ZWUC5VjP8WfUy/O1CHeyGylkB31PL5Hz5tEt63mMpHjPbX8aTLJZK6U2idGqXB66gKBNUEAB3drfxz9Oi4xaXazOxCyjwAh2BsUVyr46cc/e3/in/dDzj8eD+mTAWOUWrZFXQFHMsd23vaJKCNzHRlXA9Z++lw8KjgeXKrs6Awch9gOnEdsOBlQQQEeS+PQZwMhqE2YZTsOxgCeRu6pglGvcM4Og0Id4aamGZvm4BJnuQqj0EvXLedvYYSb8c1+8ALw1yegnlssd12Q29+94rssvLmz4jtrlXry7sqtGRvkQdlWhYSDSu6tdMtcEwlEJx67ptsdS6BjTLBBR4KtQ38Wpn4kG8iflbV+E/nJ3cjDqTb0N57Uxr3OEuxw1vqGjHBQIA+nMr6GpSZphtAKFw63xmXRVT5ZgXr6pkYmpVeSLbeEM14artBpKX9aSp1SfVEjrcC2T1kxwylX9qqvhJ6iFSA7rUmRmuEElH8n2JV1NfCeGLxlC++3puO+k9p2fH372PF1489kwC3OLQu7HFs2tZiJBnQgmBCMuVi4jNrMdh4gpBq/Ok39btd6a87HbQ+b7uBhCy/d6Hv67YTGgzmZsuzn5GUPXtftQsQUPnl6DxFDC5/+kxhBT1+AAmaGjAkNGXNuyJh3B5Ex9DmTMUpzR3OoaYYySk0s6whxX7VpO8J2LM7gcGpBnGt9VvBkzjYtiuxQVA5lb/YHpfmYmPzSwITbR15L7o7J7LHoNEO2kF3L+xYwvBMvWhxCIbJwmzgWFTaIUvfYAWuza2RPdi08GtdqBzbSHfBKRocMhOUITrnLXcrsKoUfLVq78hXnj11P78BXdEU8fe5uetaDszvvnoC26MClDpw8iOMQxgXlFWeM6xXrD2N63t123v+yH9Pz5Xjix+0UGh1gm4A5OgRiu+C2mvyr4tyoo775SbnNLeJi6wnFj10wPi8Pnk2Mr/bD+Orx2DwTVUinBbSz/S1uRgaEYEoZphwyOxGWMJ/a6I9nai/cWTUfgwm02b52wt+B7SsOlO9alrHYh+1b/Mv2dfMQvBFYeJOH6DjDKVaig6Z6AOpvYcC/aoH/fn/q7/1jJ9/7z8t8YGF4SmxiQ41ICfuB1F/hZ+8NH9N2t7/2pf7++pf6283l6Hd2uaPgAc9r5nQrD8iM2KTkAWclDxgZHnBueMALwwN+OIgHZM+ZB5wcEw8ILlFnkcwnnHzAOXZcil1HYAw91VcdyIAKODwzCqdiwYnDn893TmbHBEz1JdYOgMw3TlxBHOYK7DLhOC5/NjBER3Po6/YNOAhQ9aswCx5QgcEXNt8DwgNBMXPUD8uoA++0v1R/ZCX/7rDMH4uU5VbB1O1Iy5ae00TPcYpDmeXYto1t1+YMQ+eRI9RmYek9LGy9iL547CJ6BwYLN6to9pDV9V3a+vAUtfWQ5OguVNCHsnJslozxflRQ/GhUEN3ze9TdmaH1lBYf1FHsEEEdBRnD5SHgyUScoCPiDLd/cKR/1lf8Qv31P1BLBwjCLbuHJwoAAD4/AABQSwECFAAUAAgACAC5jTBA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIALmNMEDCLbuHJwoAAD4/AAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAvgoAAAAA" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 +
[[Kategorie: Elementargeometrie]]

Aktuelle Version vom 25. Januar 2012, 18:25 Uhr

Inhaltsverzeichnis

Strahlensätze

Satz II.04: 1. Strahlensatz (STS I)

Seien a und b zwei Strahlen aus einem Büschel mit dem gemeinsamen Punkt A. Ferner seien g und h zwei parallele Gerade, die mit a und b jeweils genau einen gemeinsamen Punkt haben.
Das Verhältnis zweier Strahlenabschnitte des Strahls a ist identisch dem Verhältnis der zwei gleichliegenden Strahlenabschnitte des Strahls b. Gleichliegende Strahlenabschnitte sind dabei Abschnitte von verschiedenen Strahlen, die jeweils zwischen dem Scheitelpunkt A und derselben Parallele oder zwischen den gleichen Parallelen liegen.
--Flo60 13:03, 18. Jan. 2012 (CET)

Beweis : \frac{|AB|}{|BC|}=\frac{|AB'|}{|BC'|}

Bei allen Beweisen wird hier das Problem der Kommensurabilität auftauchen. Dieses lagern wir jedoch aus!


--Flo60 13:03, 18. Jan. 2012 (CET)

Beweis: AC : AB = AC' : AB'


--Flo60 13:03, 18. Jan. 2012 (CET)

Satz II.05: 2. Strahlensatz (STS 2)

Satz II.06: 3. Strahlensatz (STS 3)

Kommensurabilität

Definition II.06

Zwei Strecken a und b heißen genau dann kommensurabel, wenn es eine Strecke m und ganze Zahlen p und q derart gibt, dass p|m|=|a| und q|m|=|b| gilt.

Satz II.07: Inkommensurabilität von Quadratseite und Quadratdiagonale

Die Seite a und die Diagonale d ein und desselben Quadrates sind nicht kommensurabel zueinander.

Beweis der Inkommensurabilität von Quadratseite und -diagonale