Quiz der Woche: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 4: | Zeile 4: | ||
<big>'''Übung zur Generierung einer Klasseneinteilung entsprechend obiger Idee.'''</big><br> | <big>'''Übung zur Generierung einer Klasseneinteilung entsprechend obiger Idee.'''</big><br> | ||
Wir gehen von der folgenden Menge <math> \ M</math> aus: <br> <math>\lbrace</math>-26, 17, 75, -40, -13, 17, -55, -15, 7, -35, 95, 65, -9, 40, 3, 0,91, 70, -62, -22, 12, 26, 31,33, 50, -15, -100, -83, -61, -17 <math>\rbrace</math> <br> | Wir gehen von der folgenden Menge <math> \ M</math> aus: <br> <math>\lbrace</math>-26, 17, 75, -40, -13, 17, -55, -15, 7, -35, 95, 65, -9, 40, 3, 0,91, 70, -62, -22, 12, 26, 31,33, 50, -15, -100, -83, -61, -17 <math>\rbrace</math> <br> | ||
− | Die Relation <math>\ R</math> sei wie folgt festgelegt: Zwei Zahlen aus <math>\M</math> stehen in Relation zueinander, wenn sie bei Division durch 4 denselben Rest lassen. | + | Die Relation <math>\ R</math> sei wie folgt festgelegt: Zwei Zahlen aus <math>\ M</math> stehen in Relation zueinander, wenn sie bei Division durch 4 denselben Rest lassen. |
{| | {| |
Version vom 16. Mai 2010, 16:56 Uhr
Es sei ein Äquivalenzrelation auf der Menge
. Wir zerlegen
derart in Teilmengen
, dass gilt: Jede der Teilmengen besteht aus all den Elementen von
, die in der Relation
zueinander stehen.
Übung zur Generierung einer Klasseneinteilung entsprechend obiger Idee.
Wir gehen von der folgenden Menge aus:
-26, 17, 75, -40, -13, 17, -55, -15, 7, -35, 95, 65, -9, 40, 3, 0,91, 70, -62, -22, 12, 26, 31,33, 50, -15, -100, -83, -61, -17
Die Relation sei wie folgt festgelegt: Zwei Zahlen aus
stehen in Relation zueinander, wenn sie bei Division durch 4 denselben Rest lassen.
Obst
Nutztier
Insekt
AmeiseSchafRindApfelPflaume
KirscheKäferMotteBananeDatei:Gluecks schwein.jpg
Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von eine Klasseneinteilung von
sind. Ergänzen Sie dementsprechend die folgenden Ausführungen: