Quiz der Woche: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 15: | Zeile 15: | ||
| 75 || -13 || 7 || 95 || -9 || 3 || 91 || 31 || -61 || -17 | | 75 || -13 || 7 || 95 || -9 || 3 || 91 || 31 || -61 || -17 | ||
|} | |} | ||
+ | |||
</div> | </div> | ||
− | |||
− | |||
<quiz> | <quiz> |
Version vom 16. Mai 2010, 17:12 Uhr
Es sei ein Äquivalenzrelation auf der Menge
. Wir zerlegen
derart in Teilmengen
, dass gilt: Jede der Teilmengen besteht aus all den Elementen von
, die in der Relation
zueinander stehen.
Übung zur Generierung einer Klasseneinteilung entsprechend obiger Idee.
Wir gehen von der folgenden Menge aus:
-26, 17, 75, -40, -13, 17, -55, -15, 7, -35, 95, 65, -9, 40, 3, 0,91, 70, -62, -22, 12, 26, 31,33, 50, -15, -100, -83, -61, -17
Die Relation sei wie folgt festgelegt: Zwei Zahlen aus
stehen in Relation zueinander, wenn sie bei Division durch 4 denselben Rest lassen. Da als Reste nur die Zahlen 0, 1, 2 und 3 in Frage kommen wird
in 4 verschiedene Klassen entsprechend dieser Relation eingeteilt:
-26
-40
17
75
1226-22733-100-15-833117-61-15-13-55-94039565-3550910-6270-17
Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von eine Klasseneinteilung von
sind. Ergänzen Sie dementsprechend die folgenden Ausführungen: