Quiz der Woche: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 20: | Zeile 20: | ||
<quiz> | <quiz> | ||
<big>'''Die Idee, eine Klasse durch eines ihrer Elemente zu beschreiben.'''</big><br> | <big>'''Die Idee, eine Klasse durch eines ihrer Elemente zu beschreiben.'''</big><br> | ||
− | {Wir wollen versuchen, die Art und Weise der Generierung einer beliebigen der Teilmengen <math>\ T_1, T_2, T_3, ..., T_n, ...</math> formal zu beschreiben. Diesbezüglich stellen wir fest, dass es sinnvoller ist, nicht mit Zahlen, sondern Elementen aus <math>\ M</math> zu indizieren. Unter der Klasse <math>\ T_a</math> verstehen wir dann alle Elemente von <math>\ M</math>, die mit dem Element <math>\ a</math> aus M in der Relation <math>\ R</math> stehen.} | + | {Wir wollen versuchen, die Art und Weise der Generierung einer beliebigen der Teilmengen <math>\ T_1, T_2, T_3, ..., T_n, ...</math> formal zu beschreiben. Diesbezüglich stellen wir fest, dass es sinnvoller ist, nicht mit Zahlen, sondern Elementen aus <math>\ M</math> zu indizieren. Unter der Klasse <math>\ T_a</math> verstehen wir dann alle Elemente von <math>\ M</math>, die mit dem Element <math>\ a</math> aus M in der Relation <math>\ R</math> stehen. Welche der folgenden formalen Definitionen ist bezüglich dieser Idee korrekt?} |
− | + | + | + <math> \bigwedge_{a \in M}: T_a:= \lbrace b| b \in M \land bRa \rbrace </math> |
-Test | -Test | ||
</quiz> | </quiz> |
Version vom 16. Mai 2010, 17:28 Uhr
Es sei ein Äquivalenzrelation auf der Menge
. Wir zerlegen
derart in Teilmengen
, dass gilt: Jede der Teilmengen besteht aus all den Elementen von
, die in der Relation
zueinander stehen.
Übung zur Generierung einer Klasseneinteilung entsprechend obiger Idee.
Wir gehen von der folgenden Menge aus:
-26, 17, 75, -40, -13, 17, -55, -15, 7, -35, 95, 65, -9, 40, 3, 0,91, 70, -62, -22, 12, 26, 31,33, 50, -15, -100, -83, -61, -17
Die Relation sei wie folgt festgelegt: Zwei Zahlen aus
stehen in Relation zueinander, wenn sie bei Division durch 4 denselben Rest lassen. Da als Reste nur die Zahlen 0, 1, 2 und 3 in Frage kommen wird
in 4 verschiedene Klassen entsprechend dieser Relation eingeteilt. Die Zahlen -40, 17, -26 und 75 gehören dementsprechend jeweils in eine eigene Klasse. Orden Sie die restlichen Zahlen durch Ziehen mit der Maus den richtigen Klassen zu.
17
-40
-26
75
-83-6126-100-626595-2250-13-15-3517031-9-5591123-1733-1540770
Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von eine Klasseneinteilung von
sind. Ergänzen Sie dementsprechend die folgenden Ausführungen: