Mittelsenkrechte und Winkelhalbierende (SoSe 12): Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Mittelsenkrechte) |
|||
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
+ | <div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;"> | ||
+ | {|width=90%| style="background-color:#FFFF99; padding:1em" | ||
+ | | valign="top" | | ||
+ | |||
== Mittelsenkrechte und Winkelhalbierende == | == Mittelsenkrechte und Winkelhalbierende == | ||
=== Mittelsenkrechte === | === Mittelsenkrechte === | ||
Eine Mittelsenkrechte ist das, was ihre Bezeichnung ausdrückt: | Eine Mittelsenkrechte ist das, was ihre Bezeichnung ausdrückt: | ||
eine Gerade, die eine Strecke halbiert und senkrecht auf ihr steht. | eine Gerade, die eine Strecke halbiert und senkrecht auf ihr steht. | ||
− | + | ====Erarbeitung der Definition==== | |
+ | [[Mittelsenkrechte, Classroompresenter-Folien aus der Vorlesung vom 21.06.12]] | ||
+ | ====Konstruktion der Mittelsenkrechten mittels Geogebra==== | ||
+ | Konstruieren Sie in der folgenden App die Mittelsenkrechte von <math>\overline{AB}</math> | ||
<ggb_applet width="569" height="439" version="3.2" ggbBase64="UEsDBBQACAAIAEy90TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVZNU9swED2XX6HRHcd2CIWZGKalF2ZoOYRy6E2xN46KLLmSDAm/vquVnRho6bTTlovQ7no/3u5bZX6+aRS7B+uk0QXPkpQz0KWppK4L3vnV4Qk/PzuY12BqWFrBVsY2whd8muQ8yDt5dvBm7tbmgQlFJrcSHgq+EsoBZ661ICq3BvBP5KLbSCWF3V4vv0Lp3V4RnVzqtsMo3nYoK5vqSrrhOqGArZL+g7yXFVimTFnw4xmmjv/dgvWyFKrgR2mU5AXPnylRNA3atbHy0WgfzPfOVyhhzMlHwC/TIJtPqNA5dKWSlRQ6FEN5oBFjD7Ly64LPjk/RJch6HQA6Oo7eSmNstdg6Dw3bfAFr0Gk2C0Bv420abw7zwoCzlFTjG7mB+wV4j21xTGxgD1htZfXkcuneG7UXtUZqfyFa31nq6bQXLfw2BMBYNiT8TtcKelmGkK+hvFuazYJAyKbR9c22pU8ooWV9YZSxzAZ4Z2jQn8t4kk3IdGeVkk1KFr2P4HSnz05zsqBzGU+yUlLH1PrKs6HqLB3CSMeCIMCIo7grXoklYGs567T0V8MFR+BuX2r44FPXLJED4yHY+cz+ls/55Nn4zO/AalBxSDT2tjOdY/dhGGMsSqSCUjZ4jYqszy606zMmEKUV1BaGxCODImCkTceD+Ew8nwxJhBwc5lp6XAVYjw+1BKZ6ZEnBm6ROOKuED9JABQUNIE88zQSN1A6bd3y3FAzxe2Byr9+jjOofzgdNklDtWqBkoIASW2T7uCTyd71aOfBsU/DDHAm4xV0w0n401VMYhEY4qUakZBvch4a1AFW//3w/5azFgMSZUTcIRBeDJfkRhcsSPB/j12QUCRZWAwWe9t2PiP0Cu/f/Fbt/hk6evM0JHHwoTn4PndI0jdAV06LBSAuog5xQkeFVYCINE8ZEFsCKSHR+UIjorffxAmvXexvQFPzpgvFr5LEGh7TN97VOXm/JCICf9ST9846MJi5LTk4I1KPk9Dgd/WWE8GGWJdls9mJrvlIUfNPRxsXdJRt8WEvpd7iq0ONL7XGTAW2GlwvqDqANL8O1vrFCu/ALIdqMFt+uuZPxlqGHtf9lcfYdUEsHCKHQKG82AwAAiwgAAFBLAQIUABQACAAIAEy90Tyh0ChvNgMAAIsIAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAcAMAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "true" allowRescaling = "true" /> | <ggb_applet width="569" height="439" version="3.2" ggbBase64="UEsDBBQACAAIAEy90TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVZNU9swED2XX6HRHcd2CIWZGKalF2ZoOYRy6E2xN46KLLmSDAm/vquVnRho6bTTlovQ7no/3u5bZX6+aRS7B+uk0QXPkpQz0KWppK4L3vnV4Qk/PzuY12BqWFrBVsY2whd8muQ8yDt5dvBm7tbmgQlFJrcSHgq+EsoBZ661ICq3BvBP5KLbSCWF3V4vv0Lp3V4RnVzqtsMo3nYoK5vqSrrhOqGArZL+g7yXFVimTFnw4xmmjv/dgvWyFKrgR2mU5AXPnylRNA3atbHy0WgfzPfOVyhhzMlHwC/TIJtPqNA5dKWSlRQ6FEN5oBFjD7Ly64LPjk/RJch6HQA6Oo7eSmNstdg6Dw3bfAFr0Gk2C0Bv420abw7zwoCzlFTjG7mB+wV4j21xTGxgD1htZfXkcuneG7UXtUZqfyFa31nq6bQXLfw2BMBYNiT8TtcKelmGkK+hvFuazYJAyKbR9c22pU8ooWV9YZSxzAZ4Z2jQn8t4kk3IdGeVkk1KFr2P4HSnz05zsqBzGU+yUlLH1PrKs6HqLB3CSMeCIMCIo7grXoklYGs567T0V8MFR+BuX2r44FPXLJED4yHY+cz+ls/55Nn4zO/AalBxSDT2tjOdY/dhGGMsSqSCUjZ4jYqszy606zMmEKUV1BaGxCODImCkTceD+Ew8nwxJhBwc5lp6XAVYjw+1BKZ6ZEnBm6ROOKuED9JABQUNIE88zQSN1A6bd3y3FAzxe2Byr9+jjOofzgdNklDtWqBkoIASW2T7uCTyd71aOfBsU/DDHAm4xV0w0n401VMYhEY4qUakZBvch4a1AFW//3w/5azFgMSZUTcIRBeDJfkRhcsSPB/j12QUCRZWAwWe9t2PiP0Cu/f/Fbt/hk6evM0JHHwoTn4PndI0jdAV06LBSAuog5xQkeFVYCINE8ZEFsCKSHR+UIjorffxAmvXexvQFPzpgvFr5LEGh7TN97VOXm/JCICf9ST9846MJi5LTk4I1KPk9Dgd/WWE8GGWJdls9mJrvlIUfNPRxsXdJRt8WEvpd7iq0ONL7XGTAW2GlwvqDqANL8O1vrFCu/ALIdqMFt+uuZPxlqGHtf9lcfYdUEsHCKHQKG82AwAAiwgAAFBLAQIUABQACAAIAEy90Tyh0ChvNgMAAIsIAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAcAMAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "true" allowRescaling = "true" /> | ||
− | + | ==== Definition VI.1: (Mittelsenkrechte) ==== | |
::Es sei <math>\ m</math> eine Gerade und <math>\overline{AB}</math> eine Strecke, die durch <math>\ m</math> im Punkt <math>\ M</math> geschnitten wird. <math>\ m</math> ist die Mittelsenkrechte von <math>\overline{AB}</math>, wenn | ::Es sei <math>\ m</math> eine Gerade und <math>\overline{AB}</math> eine Strecke, die durch <math>\ m</math> im Punkt <math>\ M</math> geschnitten wird. <math>\ m</math> ist die Mittelsenkrechte von <math>\overline{AB}</math>, wenn | ||
Zeile 37: | Zeile 44: | ||
===== Beweis von Satz VI.2 ===== | ===== Beweis von Satz VI.2 ===== | ||
Übungsaufgabe | Übungsaufgabe | ||
+ | |||
+ | <!--- Was hier drunter steht muss stehen bleiben ---> | ||
+ | |} | ||
+ | </div> | ||
[[Kategorie:Einführung_S]] | [[Kategorie:Einführung_S]] |
Aktuelle Version vom 21. Juni 2012, 10:05 Uhr
Mittelsenkrechte und WinkelhalbierendeMittelsenkrechteEine Mittelsenkrechte ist das, was ihre Bezeichnung ausdrückt: eine Gerade, die eine Strecke halbiert und senkrecht auf ihr steht. Erarbeitung der DefinitionMittelsenkrechte, Classroompresenter-Folien aus der Vorlesung vom 21.06.12 Konstruktion der Mittelsenkrechten mittels GeogebraKonstruieren Sie in der folgenden App die Mittelsenkrechte von Definition VI.1: (Mittelsenkrechte)
Satz VI.1: (Existenz und Eindeutigkeit der Mittelsenkrechten)
Beweis von Satz VI.1Die Existenz und Eindeutigkeit des Mittelpunktes einer Strecke wurde bereits bewiesen (Satz III.1). Die Existenz und Eindeutigkeit der Senkrechten in einem Punkt einer Geraden zu dieser Geraden wird/wurde mit Satz V.5 bewiesen. Somit ist Satz VI.1 ebenfalls bewiesen. WinkelhalbierendeEin Winkel ist ein Paar von Halbgeraden, die einen gemeinsamen Anfangspunkt haben. Eine Winkelhalbierende teilt einen Winkel in zwei Teilwinkel, die jeweils dieselbe Größe haben. Die Teilwinkel werden dadurch gebildet, dass jeder Schenkel des ursprünglichen Winkels jeweils mit der Winkelhalbierenden zu einem neuen Winkel zusammengefasst wird. Es ist also sinnvoll, die Winkelhalbierende eines Winkels als eine besondere Halbgerade zu definieren.
Definition VI.2
Satz VI.
Beweis von Satz VI.Übungsaufgabe Satz VI.2 (Existenz und Eindeutigkeit der Winkelhalbierenden)
Beweis von Satz VI.2Übungsaufgabe |